BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 8130331)

  • 21. Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid.
    Reyes Mateo C; Ulises Acuña A; Brochon JC
    Biophys J; 1995 Mar; 68(3):978-87. PubMed ID: 7756560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes.
    Radhakrishnan A; Anderson TG; McConnell HM
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12422-7. PubMed ID: 11050164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC.
    Smith EA; Wang W; Dea PK
    Chem Phys Lipids; 2012 Feb; 165(2):151-9. PubMed ID: 22200532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of bilirubin on the thermal properties of phosphatidylcholine bilayers.
    Ali S; Zakim D
    Biophys J; 1993 Jul; 65(1):101-5. PubMed ID: 8369418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Texture of lipid bilayer domains.
    Bernchou U; Brewer J; Midtiby HS; Ipsen JH; Bagatolli LA; Simonsen AC
    J Am Chem Soc; 2009 Oct; 131(40):14130-1. PubMed ID: 19702259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy.
    Korlach J; Baumgart T; Webb WW; Feigenson GW
    Biochim Biophys Acta; 2005 Mar; 1668(2):158-63. PubMed ID: 15737326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid chain saturation and the cholesterol in the phospholipid membrane affect the spectroscopic properties of lipophilic dye nile red.
    Halder A; Saha B; Maity P; Kumar GS; Sinha DK; Karmakar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():104-110. PubMed ID: 28992460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
    Bagatolli LA; Gratton E; Fidelio GD
    Biophys J; 1998 Jul; 75(1):331-41. PubMed ID: 9649390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass.
    Gunderson RS; Honerkamp-Smith AR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1965-1971. PubMed ID: 29752899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) I. Phases and morphology by epifluorescence microscopy.
    Biswas N; Shanmukh S; Waring AJ; Walther F; Wang Z; Chang Y; Notter RH; Dluhy RA
    Biophys Chem; 2005 Mar; 113(3):223-32. PubMed ID: 15620507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free coherent anti-stokes Raman scattering imaging of coexisting lipid domains in single bilayers.
    Li L; Cheng JX
    J Phys Chem B; 2008 Feb; 112(6):1576-9. PubMed ID: 18215035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of surfactin on membrane models displaying lipid phase separation.
    Deleu M; Lorent J; Lins L; Brasseur R; Braun N; El Kirat K; Nylander T; Dufrêne YF; Mingeot-Leclercq MP
    Biochim Biophys Acta; 2013 Feb; 1828(2):801-15. PubMed ID: 23159483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface properties of cholesterol-containing membranes detected by Prodan fluorescence.
    Krasnowska EK; Bagatolli LA; Gratton E; Parasassi T
    Biochim Biophys Acta; 2001 Apr; 1511(2):330-40. PubMed ID: 11286976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes.
    Parasassi T; Gratton E; Yu WM; Wilson P; Levi M
    Biophys J; 1997 Jun; 72(6):2413-29. PubMed ID: 9168019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipase A(2) activity towards vesicles of DPPC and DMPC-DSPC containing small amounts of SMPC.
    Høyrup P; Mouritsen OG; Jørgensen K
    Biochim Biophys Acta; 2001 Dec; 1515(2):133-43. PubMed ID: 11718669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laurdan emission study of the cholesterol-like effect of long-chain alkylresorcinols on the structure of dipalmitoylphosphocholine and sphingomyelin membranes.
    Zawilska P; Cieślik-Boczula K
    Biophys Chem; 2017 Feb; 221():1-9. PubMed ID: 27865129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence-quenching study of percolation and compartmentalization in two-phase lipid bilayers.
    Piknová B; Marsh D; Thompson TE
    Biophys J; 1996 Aug; 71(2):892-7. PubMed ID: 8842228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.