These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8130332)

  • 1. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism.
    Schelling G; Delius M; Gschwender M; Grafe P; Gambihler S
    Biophys J; 1994 Jan; 66(1):133-40. PubMed ID: 8130332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitation-induced streaming in shock wave lithotripsy.
    Pishchalnikov YA; McAteer JA
    Proc Meet Acoust; 2013 Jun; 19(1):. PubMed ID: 32939227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor.
    Connors BA; McAteer JA; Evan AP; Blomgren PM; Handa RK; Johnson CD; Gao S; Pishchalnikov YA; Lingeman JE
    BJU Int; 2012 Nov; 110(9):1376-85. PubMed ID: 22519983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy.
    Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE
    J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter.
    Pishchalnikov YA; McAteer JA; Williams JC; Pishchalnikova IV; Vonderhaar RJ
    J Endourol; 2006 Aug; 20(8):537-41. PubMed ID: 16903810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of Ringer's solution with different concentrations of alcohol on biphasic compound action potentials of frog sciatic nerve trunk].
    Huang ZH; Wei PJ; Jiang L; Chen S; Cheng BH; Lin Y; Wu LG; Xu QX; Wu SW; Wang HY; Shen JX
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2019 May; 35(3):232-238. PubMed ID: 31257805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury.
    Handa RK; Bailey MR; Paun M; Gao S; Connors BA; Willis LR; Evan AP
    BJU Int; 2009 May; 103(9):1270-4. PubMed ID: 19154458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a shock wave induced cavitation activity both in vitro and in vivo.
    Tu J; Matula TJ; Bailey MR; Crum LA
    Phys Med Biol; 2007 Oct; 52(19):5933-44. PubMed ID: 17881810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of firing rate on the performance of shock wave lithotriptors.
    Pishchalnikov YA; McAteer JA; Williams JC
    BJU Int; 2008 Dec; 102(11):1681-6. PubMed ID: 18710450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxic effects of acoustic cavitation on HT-29 cells and a rat peritoneal carcinomatosis in vitro.
    Prat F; Chapelon JY; Chauffert B; Ponchon T; Cathignol D
    Cancer Res; 1991 Jun; 51(11):3024-9. PubMed ID: 2032241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vitro.
    Williams JC; Stonehill MA; Colmenares K; Evan AP; Andreoli SP; Cleveland RO; Bailey MR; Crum LA; McAteer JA
    Ultrasound Med Biol; 1999 Mar; 25(3):473-9. PubMed ID: 10374989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of local anesthetics on compound action potentials generated from the frog sciatic nerve.
    Medler S
    Adv Physiol Educ; 2022 Dec; 46(4):658-666. PubMed ID: 36201308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation detection during shock-wave lithotripsy.
    Bailey MR; Pishchalnikov YA; Sapozhnikov OA; Cleveland RO; McAteer JA; Miller NA; Pishchalnikova IV; Connors BA; Crum LA; Evan AP
    Ultrasound Med Biol; 2005 Sep; 31(9):1245-56. PubMed ID: 16176791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.