These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8130332)

  • 21. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory.
    de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2015 Apr; 58():53-9. PubMed ID: 25553714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of gallstone fragments by cavitation bubbles during extracorporeal shock wave lithotripsy: physical basis and in vitro demonstration.
    Brink JA; Simeone JF; Saini S; Mueller PR; de Correia-Kamat MR; Malt RA; Staritz M; Delius M; Ferrucci JT
    Radiology; 1990 Mar; 174(3 Pt 1):787-91. PubMed ID: 2406784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of lidocaine and calcium in blocking the compound action potential of frog sciatic nerve.
    Saito H; Akutagawa T; Kitahata LM; Stagg D; Collins JG; Scurlock JE
    Anesthesiology; 1984 Mar; 60(3):205-8. PubMed ID: 6607689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shock wave lithotripsy of stones implanted in the proximal ureter of the pig.
    Paterson RF; Kim SC; Kuo RL; Lingeman JE; Evan AP; Connors BA; Williams JC; McAteer JA
    J Urol; 2005 Apr; 173(4):1391-4. PubMed ID: 15758811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bubble proliferation in the cavitation field of a shock wave lithotripter.
    Pishchalnikov YA; Williams JC; McAteer JA
    J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An electrophysiological method for measuring the potassium permeability of the nerve perineurium.
    Abbott NJ; Mitchell G; Ward KJ; Abdullah F; Smith IC
    Brain Res; 1997 Nov; 776(1-2):204-13. PubMed ID: 9439814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones.
    Delius M
    Ultrasound Med Biol; 1997; 23(4):611-7. PubMed ID: 9232770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal Protection Phenomenon Observed in a Porcine Model After Electromagnetic Lithotripsy Using a Treatment Pause.
    Connors BA; Gardner T; Liu Z; Lingeman JE; Williams JC
    J Endourol; 2021 May; 35(5):682-686. PubMed ID: 33472540
    [No Abstract]   [Full Text] [Related]  

  • 32. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery.
    Evan AP; McAteer JA; Connors BA; Blomgren PM; Lingeman JE
    BJU Int; 2007 Sep; 100(3):624-7; discussion 627-8. PubMed ID: 17550415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnesium enhances local anesthetic nerve block of frog sciatic nerve.
    Akutagawa T; Kitahata LM; Saito H; Collins JG; Katz JD
    Anesth Analg; 1984 Feb; 63(2):111-6. PubMed ID: 6606998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study.
    Zhong P; Lin H; Xi X; Zhu S; Bhogte ES
    J Acoust Soc Am; 1999 Mar; 105(3):1997-2009. PubMed ID: 10089617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An experimental model of an electrical injury to the peripheral nerve.
    Fan KW; Zhu ZX; Den ZY
    Burns; 2005 Sep; 31(6):731-6. PubMed ID: 16129227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.
    Church CC
    J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.