These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8130342)

  • 1. Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin.
    Sartor G; Mayer E; Johari GP
    Biophys J; 1994 Jan; 66(1):249-58. PubMed ID: 8130342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass-->liquid transition and crystallization behavior on reheating.
    Sartor G; Hallbrucker A; Mayer E
    Biophys J; 1995 Dec; 69(6):2679-94. PubMed ID: 8599674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR spectroscopic study of the dynamics of conformational substates in hydrated carbonyl-myoglobin films via temperature dependence of the CO stretching band parameters.
    Mayer E
    Biophys J; 1994 Aug; 67(2):862-73. PubMed ID: 7948699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric study of crystal growth of ice in hydrated methemoglobin and of redistribution of the water clusters formed on melting the ice.
    Sartor G; Mayer E
    Biophys J; 1994 Oct; 67(4):1724-32. PubMed ID: 7819504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein thermal denaturation and matrix glass transition in different protein-trehalose-water systems.
    Bellavia G; Giuffrida S; Cottone G; Cupane A; Cordone L
    J Phys Chem B; 2011 May; 115(19):6340-6. PubMed ID: 21488647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of solvent for the dynamics and the glass transition of proteins.
    Jansson H; Bergman R; Swenson J
    J Phys Chem B; 2011 Apr; 115(14):4099-109. PubMed ID: 21425816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific heat of hydrated lysozyme, water's contribution to its dynamics, and criteria for glass formation of biomaterials.
    Tombari E; Johari GP
    J Chem Phys; 2013 Sep; 139(10):105102. PubMed ID: 24050369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The protein glass transition as measured by dielectric spectroscopy and differential scanning calorimetry.
    Jansson H; Swenson J
    Biochim Biophys Acta; 2010 Jan; 1804(1):20-6. PubMed ID: 19595796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy.
    Fomina M; Schirò G; Cupane A
    Biophys Chem; 2014 Jan; 185():25-31. PubMed ID: 24309207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass transitions in aqueous solutions of protein (bovine serum albumin).
    Shinyashiki N; Yamamoto W; Yokoyama A; Yoshinari T; Yagihara S; Kita R; Ngai KL; Capaccioli S
    J Phys Chem B; 2009 Oct; 113(43):14448-56. PubMed ID: 19799444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the confined water in the dynamic crossover of hydrated lysozyme powders.
    Kurzweil-Segev Y; Greenbaum Gutina A; Popov I; Golodnitsky D; Feldman Y
    Phys Chem Chem Phys; 2016 Apr; 18(16):10992-9. PubMed ID: 27043980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.
    Kearns KL; Swallen SF; Ediger MD; Sun Y; Yu L
    J Phys Chem B; 2009 Feb; 113(6):1579-86. PubMed ID: 19154147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glass transition and sub-T(g)-relaxation in pharmaceutical powders and dried proteins by thermally stimulated current.
    Reddy R; Chang L'; Luthra S; Collins G; Lopez C; Shamblin SL; Pikal MJ; Gatlin LA; Shalaev EY
    J Pharm Sci; 2009 Jan; 98(1):81-93. PubMed ID: 18452177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transformations undergone by Triton X-100 probed by differential scanning calorimetry and dielectric relaxation spectroscopy.
    Merino EG; Rodrigues C; Viciosa MT; Melo C; Sotomayor J; Dionísio M; Correia NT
    J Phys Chem B; 2011 Nov; 115(43):12336-47. PubMed ID: 21928821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
    Diehl M; Doster W; Petry W; Schober H
    Biophys J; 1997 Nov; 73(5):2726-32. PubMed ID: 9370466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Equilibrium fluctuations in myoglobin and lysozyme].
    Krupianskiĭ IuF; Esin SV; Mikhaĭliuk MG; Vetrov OD; Eshchenko GV
    Biofizika; 2004; 49(3):401-12. PubMed ID: 15327199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations.
    Richter AG; Kuzmenko I
    Langmuir; 2013 Apr; 29(17):5167-80. PubMed ID: 23586436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid.
    Xu Y; Hu C; Hu S
    Anal Chim Acta; 2010 Mar; 663(1):19-26. PubMed ID: 20172091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Calorimetric study of the formation and melting of thermotropic gel in solutions of globular proteins].
    Belopol'skaia TV; Kazitsyna SIu; Sochava IV
    Biofizika; 1989; 34(3):520-1. PubMed ID: 2765584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A broad glass transition in hydrated proteins.
    Khodadadi S; Malkovskiy A; Kisliuk A; Sokolov AP
    Biochim Biophys Acta; 2010 Jan; 1804(1):15-9. PubMed ID: 19539792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.