These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8131061)

  • 21. Opioid antagonists and butorphanol dependence.
    Jaw SP; Hoskins B; Ho IK
    Pharmacol Biochem Behav; 1993 Mar; 44(3):497-500. PubMed ID: 8383850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of intracerebroventricular beta-funaltrexamine on mu opioid receptors in the rat brain: consideration of binding condition.
    Liu-Chen LY; Yang HH; Li S; Adams JU
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1047-56. PubMed ID: 7791074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of the opioid system in the orexigenic and hedonic effects of melanin-concentrating hormone.
    Lopez CA; Guesdon B; Baraboi ED; Roffarello BM; Hétu M; Richard D
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1105-11. PubMed ID: 21775651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opioid antagonists naloxone, beta-funaltrexamine and naltrindole, but not nor-binaltorphimine, reverse the increased hindpaw withdrawal latency in rats induced by intrathecal administration of the calcitonin gene-related peptide antagonist CGRP8-37.
    Yu LC; Hansson P; Lundeberg T
    Brain Res; 1995 Nov; 698(1-2):23-9. PubMed ID: 8581488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between opioid antagonists and amphetamine: evidence for mediation by central delta opioid receptors.
    Jones DN; Holtzman SG
    J Pharmacol Exp Ther; 1992 Aug; 262(2):638-45. PubMed ID: 1323656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for neuropeptide-Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation.
    Lambert PD; Wilding JP; al-Dokhayel AA; Bohuon C; Comoy E; Gilbey SG; Bloom SR
    Endocrinology; 1993 Jul; 133(1):29-32. PubMed ID: 8100519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of selective opiate antagonists on striatal acetylcholine and dopamine release.
    Sandor NT; Lendvai B; Vizi ES
    Brain Res Bull; 1992; 29(3-4):369-73. PubMed ID: 1327422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice.
    Ikeda H; Ardianto C; Yonemochi N; Yang L; Ohashi T; Ikegami M; Nagase H; Kamei J
    Neuroscience; 2015 Dec; 311():9-21. PubMed ID: 26454026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats.
    Kelley AE; Bless EP; Swanson CJ
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1499-507. PubMed ID: 8819538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-fed rats.
    Leventhal L; Kirkham TC; Cole JL; Bodnar RJ
    Brain Res; 1995 Jul; 685(1-2):205-10. PubMed ID: 7583248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of opioid receptor subtype antagonist effects in the ventral tegmental area upon food intake under deprivation, glucoprivic and palatable conditions.
    Ragnauth A; Ruegg H; Bodnar RJ
    Brain Res; 1997 Aug; 767(1):8-16. PubMed ID: 9365010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuropeptide Y and food intake in fasted rats: effect of naloxone and site of action.
    Schick RR; Schusdziarra V; Nussbaumer C; Classen M
    Brain Res; 1991 Jun; 552(2):232-9. PubMed ID: 1913187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic prevention of mu-opioid receptor (MOR) G-protein coupling in the pontine parabrachial nucleus persistently decreases consumption of standard but not palatable food.
    Ward HG; Simansky KJ
    Psychopharmacology (Berl); 2006 Sep; 187(4):435-46. PubMed ID: 16847679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of multiple opioid receptors in the maintenance of stimulation-induced feeding.
    Papadouka V; Carr KD
    Brain Res; 1994 Mar; 639(1):42-8. PubMed ID: 8180837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anoretic effects of neuropeptide FF are mediated via central mu and kappa subtypes of opioid receptors and receptor ligands.
    Cline MA; Mathews DS
    Gen Comp Endocrinol; 2008; 159(2-3):125-9. PubMed ID: 18823989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions.
    Bodnar RJ; Glass MJ; Ragnauth A; Cooper ML
    Brain Res; 1995 Nov; 700(1-2):205-12. PubMed ID: 8624711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective alterations in macronutrient intake of food-deprived or glucoprivic rats by centrally-administered opioid receptor subtype antagonists in rats.
    Koch JE; Bodnar RJ
    Brain Res; 1994 Sep; 657(1-2):191-201. PubMed ID: 7820618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interrelationships between mu opioid and melanocortin receptors in mediating food intake in rats.
    Grossman HC; Hadjimarkou MM; Silva RM; Giraudo SQ; Bodnar RJ
    Brain Res; 2003 Nov; 991(1-2):240-4. PubMed ID: 14575897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Central opioid receptor subtype antagonists differentially alter sucrose and deprivation-induced water intake in rats.
    Beczkowska IW; Bowen WD; Bodnar RJ
    Brain Res; 1992 Sep; 589(2):291-301. PubMed ID: 1327413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Naloxone blocks 'anxiolytic' effects of neuropeptide Y.
    Britton KT; Southerland S
    Peptides; 2001 Apr; 22(4):607-12. PubMed ID: 11311731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.