BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8131839)

  • 1. Presence and significance of minor antenna components in the energy transfer sequence of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Mimuro M; Nozawa T; Tamai N; Nishimura Y; Yamazaki I
    FEBS Lett; 1994 Mar; 340(3):167-72. PubMed ID: 8131839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus.
    Novoderezhkin VI; Taisova AS; Fetisova ZG; Blankenship RE; Savikhin S; Buck DR; Struve WS
    Biophys J; 1998 Apr; 74(4):2069-75. PubMed ID: 9545065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus.
    Savikhin S; Zhu Y; Blankenship RE; Struve WS
    J Phys Chem; 1996 Feb; 100(9):3320-2. PubMed ID: 11539413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus.
    Brune DC; King GH; Infosino A; Steiner T; Thewalt ML; Blankenship RE
    Biochemistry; 1987 Dec; 26(26):8652-8. PubMed ID: 3442680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum.
    Savikhin S; van Noort PI; Zhu Y; Lin S; Blankenship RE; Struve WS
    Chem Phys; 1995 May; 194(2-3):245-58. PubMed ID: 11540594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus.
    Müller MG; Griebenow K; Holzwarth AR
    Biochim Biophys Acta; 1993 Sep; 1144(2):161-9. PubMed ID: 8369334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna.
    Frigaard N; Tokita S; Matsuura K
    Biochim Biophys Acta; 1999 Nov; 1413(3):108-16. PubMed ID: 10556623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus.
    Montaño GA; Wu HM; Lin S; Brune DC; Blankenship RE
    Biochemistry; 2003 Sep; 42(34):10246-51. PubMed ID: 12939153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Excitation Energy Transfer within the Baseplate BChl
    Jassas M; Goodson C; Blankenship RE; Jankowiak R; Kell A
    J Phys Chem B; 2019 Nov; 123(46):9786-9791. PubMed ID: 31660744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of the B808-866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus.
    Xin Y; Lin S; Montaño GA; Blankenship RE
    Photosynth Res; 2005 Nov; 86(1-2):155-63. PubMed ID: 16172935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light control over the size of an antenna unit building block as an efficient strategy for light harvesting in photosynthesis.
    Yakovlev AG; Taisova AS; Fetisova ZG
    FEBS Lett; 2002 Feb; 512(1-3):129-32. PubMed ID: 11852066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes.
    Brune DC; Nozawa T; Blankenship RE
    Biochemistry; 1987 Dec; 26(26):8644-52. PubMed ID: 3442679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a--protein antenna trimers from the green bacterium Chlorobium tepidum.
    Savikhin S; Zhou W; Blankenship RE; Struve WS
    Biophys J; 1994 Jan; 66(1):110-3. PubMed ID: 8130329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved spectroscopy of energy transfer and trapping upon selective excitation in membranes of Heliobacillus mobilis at low temperature.
    Chiou HC; Lin S; Blankenship RE
    J Phys Chem B; 1997 May; 101(20):4136-41. PubMed ID: 11540131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus : I. The cytoplasmic membrane.
    Vasmel H; Van Dorssen RJ; De Vos GJ; Amesz J
    Photosynth Res; 1986 Jan; 7(3):281-94. PubMed ID: 24443124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SANS investigation of the photosynthetic machinery of Chloroflexus aurantiacus.
    Tang KH; Urban VS; Wen J; Xin Y; Blankenship RE
    Biophys J; 2010 Oct; 99(8):2398-407. PubMed ID: 20959079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria.
    Wang J; Brune DC; Blankenship RE
    Biochim Biophys Acta; 1990 Feb; 1015(3):457-63. PubMed ID: 11536463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus.
    Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z
    Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.