These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8131929)
1. ATPase activity and ATP/ADP-induced conformational change in the bacterial toxin exporter hemolysin B. Milisav-Ribaric I; Hughes C; Koronakis E; Koronakis V Biochem Soc Trans; 1993 Nov; 21(4):347S. PubMed ID: 8131929 [No Abstract] [Full Text] [Related]
2. Protein exporter function and in vitro ATPase activity are correlated in ABC-domain mutants of HlyB. Koronakis E; Hughes C; Milisav I; Koronakis V Mol Microbiol; 1995 Apr; 16(1):87-96. PubMed ID: 7651140 [TBL] [Abstract][Full Text] [Related]
3. ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Koronakis V; Hughes C; Koronakis E Mol Microbiol; 1993 Jun; 8(6):1163-75. PubMed ID: 8361361 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175 [TBL] [Abstract][Full Text] [Related]
5. Structure-function analysis of hemolysin B. Zhang F; Sheps JA; Ling V Methods Enzymol; 1998; 292():51-66. PubMed ID: 9711546 [No Abstract] [Full Text] [Related]
6. Ligand-dependent tryptic inactivation of the ouabain sensitivity of ADP-ATP exchange catalyzed by canine renal Na+, K+-ATPase. Lea JR; Winter CG Biochem Biophys Res Commun; 1977 Jun; 76(3):772-7. PubMed ID: 143280 [No Abstract] [Full Text] [Related]
7. Crystallization and preliminary X-ray analysis of the ATP-binding domain of the ABC transporter haemolysin B from Escherichia coli. Kránitz L; Benabdelhak H; Horn C; Blight MA; Holland IB; Schmitt L Acta Crystallogr D Biol Crystallogr; 2002 Mar; 58(Pt 3):539-41. PubMed ID: 11856849 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter. Zaitseva J; Jenewein S; Wiedenmann A; Benabdelhak H; Holland IB; Schmitt L Biochemistry; 2005 Jul; 44(28):9680-90. PubMed ID: 16008353 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the nucleotide-binding capacity and the ATPase activity of the PIP3-binding protein JFC1. Catz SD; Johnson JL; Babior BM Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11230-5. PubMed ID: 11553774 [TBL] [Abstract][Full Text] [Related]
10. Does myosin-substrate interaction in vitro result in a delocalized conformation change? Cassim JY; Lin TI J Supramol Struct; 1975; 3(5-6):510-9. PubMed ID: 173927 [TBL] [Abstract][Full Text] [Related]
11. Exploration of adenosine 5'-diphosphate-adenosine 5'-triphosphate binding sites of Escherichia coli adenosine 5'-triphosphatase with arylazido adenine nucleotides. Lunardi J; Satre M; Vignais PV Biochemistry; 1981 Feb; 20(3):473-80. PubMed ID: 6452156 [No Abstract] [Full Text] [Related]
12. Nucleotide regulatory sites on skeletal myosin. Laborda-Santesteban MS; López-Unzu MJ; López-Zabalza MJ; López-Moratalla N; Santiago E Rev Esp Fisiol; 1989 Mar; 45(1):71-7. PubMed ID: 2526354 [TBL] [Abstract][Full Text] [Related]
13. Magnesium regulates both the nucleotide binding and the enzyme activity of isolated chloroplast coupling factor 1. Hisabori T; Mochizuki K J Biochem; 1993 Dec; 114(6):808-12. PubMed ID: 8138536 [TBL] [Abstract][Full Text] [Related]
14. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. Alder NN; Shen Y; Brodsky JL; Hendershot LM; Johnson AE J Cell Biol; 2005 Jan; 168(3):389-99. PubMed ID: 15684029 [TBL] [Abstract][Full Text] [Related]
15. [Dialdehyde derivatives of purine mononucleotides: substrate properties and affinity modification of myosin ATPase]. Grishin MN; Kodentsova VM; Abdraimova UA; Nikolaeva OP; Petushkova EV Biokhimiia; 1985 Sep; 50(9):1517-22. PubMed ID: 2932167 [TBL] [Abstract][Full Text] [Related]
16. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction. Roisin MP; Kepes A Biochim Biophys Acta; 1972 Sep; 275(3):333-46. PubMed ID: 4262689 [No Abstract] [Full Text] [Related]
17. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Yoshida H; Tonomura Y J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370 [TBL] [Abstract][Full Text] [Related]
18. S-decyl-glutathione nonspecifically stimulates the ATPase activity of the nucleotide-binding domains of the human multidrug resistance-associated protein, MRP1 (ABCC1). Cool RH; Veenstra MK; van Klompenburg W; Heyne RI; Müller M; de Vries EG; van Veen HW; Konings WN Eur J Biochem; 2002 Jul; 269(14):3470-8. PubMed ID: 12135486 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of genetic mutations in nucleotide binding domain 2 of the human retina specific ABC transporter. Biswas-Fiss EE Biochemistry; 2003 Sep; 42(36):10683-96. PubMed ID: 12962493 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]