These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8131929)
41. Inhibition of ADP-induced aggregation of human platelets by beta, gamma-methylene-ATP. Evans PM Cytobios; 1978; 23(90):101-8. PubMed ID: 158489 [TBL] [Abstract][Full Text] [Related]
42. Interdomain communication in the molecular chaperone DnaK. Han W; Christen P Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055 [TBL] [Abstract][Full Text] [Related]
43. Analysis of gain-of-function mutants of an ATP-dependent regulator of Tn7 transposition. Stellwagen AE; Craig NL J Mol Biol; 2001 Jan; 305(3):633-42. PubMed ID: 11152618 [TBL] [Abstract][Full Text] [Related]
44. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. Bienengraeber M; Alekseev AE; Abraham MR; Carrasco AJ; Moreau C; Vivaudou M; Dzeja PP; Terzic A FASEB J; 2000 Oct; 14(13):1943-52. PubMed ID: 11023978 [TBL] [Abstract][Full Text] [Related]
45. Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. Reimann S; Poschmann G; Kanonenberg K; Stühler K; Smits SH; Schmitt L Biochem J; 2016 Aug; 473(16):2471-83. PubMed ID: 27279651 [TBL] [Abstract][Full Text] [Related]
46. The ATPase activity of purified CDC48p from Saccharomyces cerevisiae shows complex dependence on ATP-, ADP-, and NADH-concentrations and is completely inhibited by NEM. Fröhlich KU; Fries HW; Peters JM; Mecke D Biochim Biophys Acta; 1995 Nov; 1253(1):25-32. PubMed ID: 7492595 [TBL] [Abstract][Full Text] [Related]
47. Chimers of two fused ADP/ATP carrier monomers indicate a single channel for ADP/ATP transport. Huang SG; Odoy S; Klingenberg M Arch Biochem Biophys; 2001 Oct; 394(1):67-75. PubMed ID: 11566029 [TBL] [Abstract][Full Text] [Related]
48. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. McLaughlin SH; Ventouras LA; Lobbezoo B; Jackson SE J Mol Biol; 2004 Nov; 344(3):813-26. PubMed ID: 15533447 [TBL] [Abstract][Full Text] [Related]
50. Interaction of homogeneous mitochondrial ATPase from rat liver with adenine nucleotides and inorganic phosphate. Pedersen PL J Supramol Struct; 1975; 3(3):222-30. PubMed ID: 127085 [TBL] [Abstract][Full Text] [Related]
51. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Suko J; Hasselbach W Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267 [TBL] [Abstract][Full Text] [Related]
52. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum. Suko J; Hasselbach W Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657 [No Abstract] [Full Text] [Related]
53. Domain structure and ATP-induced conformational changes in Escherichia coli protease Lon revealed by limited proteolysis and autolysis. Vasilyeva OV; Kolygo KB; Leonova YF; Potapenko NA; Ovchinnikova TV FEBS Lett; 2002 Aug; 526(1-3):66-70. PubMed ID: 12208506 [TBL] [Abstract][Full Text] [Related]
54. Inactivation of ecto-ATPase activity of rat brain synaptosomes. Martín-Romero FJ; García-Martín E; Gutiérrez-Merino C Biochim Biophys Acta; 1996 Aug; 1283(1):51-9. PubMed ID: 8765094 [TBL] [Abstract][Full Text] [Related]
55. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293 [TBL] [Abstract][Full Text] [Related]
56. Localisation of adenine nucleotide-binding sites on beef-heart mitochondrial ATPase by photolabelling with 8-azido-ADP and 8-azido-ATP. Wagenvoord RJ; van der Kraan I; Kemp A Biochim Biophys Acta; 1979 Oct; 548(1):85-95. PubMed ID: 158387 [TBL] [Abstract][Full Text] [Related]
57. The effect of hydrostatic pressure on the interaction of actomyosin subfragment 1 with nucleotides. McKillop DF; Geeves MA; Balny C Biochem Biophys Res Commun; 1991 Oct; 180(2):552-7. PubMed ID: 1835384 [TBL] [Abstract][Full Text] [Related]
58. A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. Randak C; Neth P; Auerswald EA; Eckerskorn C; Assfalg-Machleidt I; Machleidt W FEBS Lett; 1997 Jun; 410(2-3):180-6. PubMed ID: 9237625 [TBL] [Abstract][Full Text] [Related]
59. Reversible inhibition of (Na+, K+) ATPase by Mg2+, adenosine triphosphate, and K+. Fagan JB; Racker E Biochemistry; 1977 Jan; 16(1):152-8. PubMed ID: 137742 [TBL] [Abstract][Full Text] [Related]
60. Active transport of ATP and presence of a vanadate-sensitive membrane-bound ATPase in Mycobacterium leprae. Prabhakaran K; Harris EB; Randhawa B Microbios; 1991; 67(271):125-32. PubMed ID: 1833612 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]