These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8131985)

  • 21. P450BM-3: reduction by NADPH and sodium dithionite.
    Peterson JA; Boddupalli SS
    Arch Biochem Biophys; 1992 May; 294(2):654-61. PubMed ID: 1567220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.
    Waltham TN; Girvan HM; Butler CF; Rigby SR; Dunford AJ; Holt RA; Munro AW
    Metallomics; 2011 Apr; 3(4):369-78. PubMed ID: 21431175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities.
    Yun CH; Kim KH; Kim DH; Jung HC; Pan JG
    Trends Biotechnol; 2007 Jul; 25(7):289-98. PubMed ID: 17532492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput screens based on NAD(P)H depletion.
    Glieder A; Meinhold P
    Methods Mol Biol; 2003; 230():157-70. PubMed ID: 12824579
    [No Abstract]   [Full Text] [Related]  

  • 27. Imidazolyl carboxylic acids as mechanistic probes of flavocytochrome P-450 BM3.
    Noble MA; Quaroni L; Chumanov GD; Turner KL; Chapman SK; Hanzlik RP; Munro AW
    Biochemistry; 1998 Nov; 37(45):15799-807. PubMed ID: 9843385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tailor-made, self-sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase.
    Valikhani D; Bolivar JM; Dennig A; Nidetzky B
    Biotechnol Bioeng; 2018 Oct; 115(10):2416-2425. PubMed ID: 30036448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options.
    Whitehouse CJ; Bell SG; Tufton HG; Kenny RJ; Ogilvie LC; Wong LL
    Chem Commun (Camb); 2008 Feb; (8):966-8. PubMed ID: 18283351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of hydroxlated flavonoids with cytochrome P450 BM3 variant F87V and their antioxidative activities.
    Kitamura E; Otomatsu T; Maeda C; Aoki Y; Ota C; Misawa N; Shindo K
    Biosci Biotechnol Biochem; 2013; 77(6):1340-3. PubMed ID: 23748780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein engineering of the cytochrome P450 monooxygenase from Bacillus megaterium.
    Urlacher VB; Schmid RD
    Methods Enzymol; 2004; 388():208-24. PubMed ID: 15289074
    [No Abstract]   [Full Text] [Related]  

  • 32. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme.
    Warman AJ; Roitel O; Neeli R; Girvan HM; Seward HE; Murray SA; McLean KJ; Joyce MG; Toogood H; Holt RA; Leys D; Scrutton NS; Munro AW
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):747-53. PubMed ID: 16042591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes.
    Weber E; Seifert A; Antonovici M; Geinitz C; Pleiss J; Urlacher VB
    Chem Commun (Camb); 2011 Jan; 47(3):944-6. PubMed ID: 21079837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic fusion of P450 BM3 and formate dehydrogenase towards self-sufficient biocatalysts with enhanced activity.
    Kokorin A; Parshin PD; Bakkes PJ; Pometun AA; Tishkov VI; Urlacher VB
    Sci Rep; 2021 Nov; 11(1):21706. PubMed ID: 34737365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome P450BM-3 (CYP102): regiospecificity of oxidation of omega-unsaturated fatty acids and mechanism-based inactivation.
    Shirane N; Sui Z; Peterson JA; Ortiz de Montellano PR
    Biochemistry; 1993 Dec; 32(49):13732-41. PubMed ID: 8257708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation.
    Oliver CF; Modi S; Sutcliffe MJ; Primrose WU; Lian LY; Roberts GC
    Biochemistry; 1997 Feb; 36(7):1567-72. PubMed ID: 9048540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing inter-domain electron transfer in a model flavocytochrome P-450.
    Munro AW; Daff SN; Turner KL; Chapman SK
    Biochem Soc Trans; 1997 Nov; 25(4):S629. PubMed ID: 9450057
    [No Abstract]   [Full Text] [Related]  

  • 38. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons.
    Carmichael AB; Wong LL
    Eur J Biochem; 2001 May; 268(10):3117-25. PubMed ID: 11358532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3.
    Udit AK; Arnold FH; Gray HB
    J Inorg Biochem; 2004 Sep; 98(9):1547-50. PubMed ID: 15337607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oleic acid based experimental evolution of Bacillus megaterium yielding an enhanced P450 BM3 variant.
    Vincent T; Gaillet B; Garnier A
    BMC Biotechnol; 2022 Jul; 22(1):20. PubMed ID: 35831844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.