These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8132087)

  • 1. Important roles for novel protein phosphatases dephosphorylating serine and threonine residues.
    Cohen PT
    Biochem Soc Trans; 1993 Nov; 21(4):884-8. PubMed ID: 8132087
    [No Abstract]   [Full Text] [Related]  

  • 2. [Serine/threonine phosphoprotein phosphatases in brain tissue].
    Zylińska L; Lachowicz L
    Postepy Biochem; 1995; 41(4):276-82. PubMed ID: 8851145
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphotyrosyl-protein phosphatases.
    Foulkes JG
    Curr Top Microbiol Immunol; 1983; 107():163-80. PubMed ID: 6199163
    [No Abstract]   [Full Text] [Related]  

  • 4. Evidence for phosphoprotein phosphatase in Streptomyces granaticolor.
    Bobek J; Hercík K; Dobrová Z; Branny P; Nádvorník R; Janecek J
    Folia Microbiol (Praha); 2000; 45(4):310-2. PubMed ID: 11347251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of phosphopeptides to distinguish between protein phosphatase and acid/alkaline phosphatase activities: opposite specificity toward phosphoseryl/phosphothreonyl substrates.
    Donella-Deana A; Meyer HE; Pinna LA
    Biochim Biophys Acta; 1991 Aug; 1094(1):130-3. PubMed ID: 1653021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic labeling of mitogen-activated protein kinase kinase in A431 cells demonstrates phosphorylation on serine and threonine residues.
    Ahn NG; Campbell JS; Seger R; Jensen AL; Graves LM; Krebs EG
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5143-7. PubMed ID: 8389470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cell cycle progression and nuclear affinity of the retinoblastoma protein by protein phosphatases.
    Alberts AS; Thorburn AM; Shenolikar S; Mumby MC; Feramisco JR
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):388-92. PubMed ID: 8380637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of brain calcineurin towards proteins containing Thr(P) and Ser(P) by Ca2+, calmodulin, Mg2+ and transition metal ions.
    Li HC; Chan WW
    Eur J Biochem; 1984 Nov; 144(3):447-52. PubMed ID: 6092074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serine-threonine protein kinase activity of Elm1p, a regulator of morphologic differentiation in Saccharomyces cerevisiae.
    Koehler CM; Myers AM
    FEBS Lett; 1997 May; 408(1):109-14. PubMed ID: 9180279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the in vivo phosphorylation state of protein phosphatase inhibitor-2 from rabbit skeletal muscle by fast-atom bombardment mass spectrometry.
    Holmes CF; Tonks NK; Major H; Cohen P
    Biochim Biophys Acta; 1987 Jul; 929(2):208-19. PubMed ID: 3036252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling through scaffold, anchoring, and adaptor proteins.
    Pawson T; Scott JD
    Science; 1997 Dec; 278(5346):2075-80. PubMed ID: 9405336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases.
    Nguyen AN; Shiozaki K
    Genes Dev; 1999 Jul; 13(13):1653-63. PubMed ID: 10398679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerase chain reactions using Saccharomyces, Drosophila and human DNA predict a large family of protein serine/threonine phosphatases.
    Chen MX; Chen YH; Cohen PT
    FEBS Lett; 1992 Jul; 306(1):54-8. PubMed ID: 1321058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoprotein phosphatase activity of human prostate acid phosphatase.
    Wasylewska E; Czubak J; Ostrowski WS
    Acta Biochim Pol; 1983; 30(2):175-84. PubMed ID: 6306966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases.
    Gómez N; Cohen P
    Nature; 1991 Sep; 353(6340):170-3. PubMed ID: 1716348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver staining of phosphoserine and phosphothreonine in nucleolar and other phosphoproteins.
    Satoh K; Busch H
    Cell Biol Int Rep; 1981 Sep; 5(9):857-66. PubMed ID: 6170463
    [No Abstract]   [Full Text] [Related]  

  • 17. The 96 kDa protein kinase activated by oncogenic Ras in Xenopus egg extracts is also activated by constitutively active Mek: activation requires serine/threonine phosphorylation.
    Pan BT; Zhang Y; Brott B; Chen DH
    Oncogene; 1997 Apr; 14(14):1653-60. PubMed ID: 9135066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multifunctional protein OBF1 is phosphorylated at serine and threonine residues in Saccharomyces cerevisiae.
    Francesconi SC; Eisenberg S
    Proc Natl Acad Sci U S A; 1991 May; 88(10):4089-93. PubMed ID: 2034654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin-stimulated serine/threonine phosphorylation of the insulin receptor: paucity of threonine 1348 phosphorylation in vitro indicates the involvement of more than one serine/threonine kinase in vivo.
    Pillay TS; Siddle K
    Biochem Biophys Res Commun; 1991 Sep; 179(2):962-71. PubMed ID: 1654905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.