These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8132157)

  • 1. Metabolism of 4-chlorophenol by Azotobacter sp. GP1: structure of the meta cleavage product of 4-chlorocatechol.
    Wieser M; Eberspächer J; Vogler B; Lingens F
    FEMS Microbiol Lett; 1994 Feb; 116(1):73-8. PubMed ID: 8132157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800.
    Arora PK; Srivastava A; Singh VP
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2298-2304. PubMed ID: 24057966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde.
    Riegert U; Heiss G; Fischer P; Stolz A
    J Bacteriol; 1998 Jun; 180(11):2849-53. PubMed ID: 9603871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of mono-chlorophenols by a mixed microbial community via a meta- cleavage pathway.
    Farrell A; Quilty B
    Biodegradation; 1999; 10(5):353-62. PubMed ID: 10870551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1.
    Li DY; Eberspächer J; Wagner B; Kuntzer J; Lingens F
    Appl Environ Microbiol; 1991 Jul; 57(7):1920-8. PubMed ID: 1892382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of dichloromethylcatechols as central intermediates in the degradation of dichlorotoluenes by Ralstonia sp. strain PS12.
    Pollmann K; Kaschabek S; Wray V; Reineke W; Pieper DH
    J Bacteriol; 2002 Oct; 184(19):5261-74. PubMed ID: 12218011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.
    Kolomytseva M; Ferraroni M; Chernykh A; Golovleva L; Scozzafava A
    Biochim Biophys Acta; 2014 Sep; 1844(9):1541-9. PubMed ID: 24768773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
    Farrell A; Quilty B
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase.
    Horvath RS
    Biochem J; 1970 Oct; 119(5):871-6. PubMed ID: 5492853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1.
    Wieser M; Wagner B; Eberspächer J; Lingens F
    J Bacteriol; 1997 Jan; 179(1):202-8. PubMed ID: 8981999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol.
    Ferraroni M; Kolomytseva MP; Solyanikova IP; Scozzafava A; Golovleva LA; Briganti F
    J Mol Biol; 2006 Jul; 360(4):788-99. PubMed ID: 16793061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain.
    Fava F; Armenante PM; Kafkewitz D
    Lett Appl Microbiol; 1995 Nov; 21(5):307-12. PubMed ID: 7576526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup.
    Solyanikova I; Golovleva L
    Mikrobiologiia; 2011; 80(5):579-94. PubMed ID: 22168001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates.
    Schmidt E; Remberg G; Knackmuss HJ
    Biochem J; 1980 Oct; 192(1):331-7. PubMed ID: 7305905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate.
    Laemmli CM; Schönenberger R; Suter M; Zehnder AJ; van der Meer JR
    Arch Microbiol; 2002 Jul; 178(1):13-25. PubMed ID: 12070765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorobenzene degradation by Bacillus sp. TAS6CB: a potential candidate to remediate chlorinated hydrocarbon contaminated sites.
    Vyas TK; Murthy SR
    J Basic Microbiol; 2015 Mar; 55(3):382-8. PubMed ID: 23720149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum.
    Balajee S; Mahadevan A
    Xenobiotica; 1990 Jun; 20(6):607-17. PubMed ID: 2219955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cis-cis muconic acid in the catalysis of Pseudomonas putida chlorocatechol 1,2-dioxygenase.
    Melo FA; Araújo AP; Costa-Filho AJ
    Int J Biol Macromol; 2010 Aug; 47(2):233-7. PubMed ID: 20452370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of 3-chloro-2-methylbenzoic acid by Pseudomonas cepacia MB2 through the meta fission pathway.
    Higson FK; Focht DD
    Appl Environ Microbiol; 1992 Aug; 58(8):2501-4. PubMed ID: 1381172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions.
    Nestler H; Kiesel B; Kaschabek SR; Mau M; Schlömann M; Balcke GU
    Biodegradation; 2007 Dec; 18(6):755-67. PubMed ID: 17279449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.