BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 8132234)

  • 1. Characterisation of the routes of methionine transport in mouse mammary glands.
    Verma N; Kansal VK
    Indian J Med Res; 1993 Dec; 98():297-304. PubMed ID: 8132234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation and starvation induced regulation of methionine uptake sites in mouse mammary gland.
    Verma N; Kansal VK
    Indian J Exp Biol; 1995 Jul; 33(7):516-20. PubMed ID: 7590960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland.
    Tovar AR; Avila E; DeSantiago S; Torres N
    Metabolism; 2000 Jul; 49(7):873-9. PubMed ID: 10909998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of alpha-aminoisobutyric acid transport by lactating rat mammary gland.
    Shennan DB; McNeillie SA
    J Dairy Res; 1994 Feb; 61(1):9-19. PubMed ID: 8188948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of glycine transport in mouse mammary tissue.
    Rehan G; Kansal VK; Sharma R
    J Dairy Res; 2000 Nov; 67(4):475-83. PubMed ID: 11131062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity of transport systems for L-glutamine in mouse mammary gland.
    Sharma R; Kansal VK
    Indian J Biochem Biophys; 2001 Aug; 38(4):241-8. PubMed ID: 11811619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of transport systems of L-tyrosine in mouse mammary gland: characterization of system T.
    Rekha ; Kansal VK
    Indian J Exp Biol; 1996 Aug; 34(8):750-7. PubMed ID: 8979480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of transport systems of L-alanine in mouse mammary gland and their regulation by lactogenic hormones: evidence for two broad spectrum systems.
    Sharma R; Kansal VK
    J Dairy Res; 1999 Aug; 66(3):385-98. PubMed ID: 10480078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]methionine in human glioma cell lines.
    Ono M; Oka S; Okudaira H; Schuster DM; Goodman MM; Kawai K; Shirakami Y
    Brain Res; 2013 Oct; 1535():24-37. PubMed ID: 23994214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of functional correlation between gamma-glutamyl transpeptidase and amino acid transport in the lactating mouse mammary gland.
    Kansal R; Kansal VK
    Indian J Exp Biol; 1996 Mar; 34(3):267-9. PubMed ID: 8781038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral amino acid transport in embryonal carcinoma cells.
    Zuzack JS; Tasca RJ; DiZio SM
    J Cell Physiol; 1985 Mar; 122(3):379-86. PubMed ID: 3968192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an alanine, serine, and cysteine system of transport in isolated brain capillaries.
    Tayarani I; Lefauconnier JM; Roux F; Bourre JM
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):585-91. PubMed ID: 3116007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine.
    Langen KJ; Mühlensiepen H; Holschbach M; Hautzel H; Jansen P; Coenen HH
    J Nucl Med; 2000 Jul; 41(7):1250-5. PubMed ID: 10914918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of L-glutamine transport by lactating mammary tissue.
    Calvert DT; Kim TG; Choung JJ; Burns C; Shennan DB
    J Dairy Res; 1998 May; 65(2):199-208. PubMed ID: 9627839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine transport in lactating rat mammary tissue: evidence for an interaction between cationic and neutral amino acids.
    Shennan DB; McNeillie SA; Jamieson EA; Calvert DT
    Acta Physiol Scand; 1994 Aug; 151(4):461-6. PubMed ID: 7976419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine uptake by mammary gland tissue from lactating sows.
    Hurley WL; Wang H; Bryson JM; Shennan DB
    J Anim Sci; 2000 Feb; 78(2):391-5. PubMed ID: 10709930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of neutral and cationic amino acid transport in Xenopus oocytes.
    Campa MJ; Kilberg MS
    J Cell Physiol; 1989 Dec; 141(3):645-52. PubMed ID: 2592432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents.
    Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K
    Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of system A amino acid transport and hepatocyte proliferation following partial hepatectomy in the rat.
    Freeman TL; Ngo HQ; Mailliard ME
    Hepatology; 1999 Aug; 30(2):437-44. PubMed ID: 10421652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine transport in fibroblasts from healthy volunteers and patients with schizophrenia.
    Olsson E; Wiesel FA; Bjerkenstedt L; Venizelos N
    Neurosci Lett; 2006 Jan; 393(2-3):211-5. PubMed ID: 16274928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.