These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 8132455)
1. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. Shimizu T; Ba-Thein W; Tamaki M; Hayashi H J Bacteriol; 1994 Mar; 176(6):1616-23. PubMed ID: 8132455 [TBL] [Abstract][Full Text] [Related]
2. The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. Cheung JK; Rood JI J Bacteriol; 2000 Jan; 182(1):57-66. PubMed ID: 10613863 [TBL] [Abstract][Full Text] [Related]
3. The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens. Cheung JK; Dupuy B; Deveson DS; Rood JI J Bacteriol; 2004 Jun; 186(11):3321-30. PubMed ID: 15150217 [TBL] [Abstract][Full Text] [Related]
4. An upstream regulatory sequence stimulates expression of the perfringolysin O gene of Clostridium perfringens. Shimizu T; Okabe A; Minami J; Hayashi H Infect Immun; 1991 Jan; 59(1):137-42. PubMed ID: 1987025 [TBL] [Abstract][Full Text] [Related]
5. Perfringolysin O expression in Clostridium perfringens is independent of the upstream pfoR gene. Awad MM; Rood JI J Bacteriol; 2002 Apr; 184(7):2034-8. PubMed ID: 11889112 [TBL] [Abstract][Full Text] [Related]
6. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. Ba-Thein W; Lyristis M; Ohtani K; Nisbet IT; Hayashi H; Rood JI; Shimizu T J Bacteriol; 1996 May; 178(9):2514-20. PubMed ID: 8626316 [TBL] [Abstract][Full Text] [Related]
7. Collagenase gene (colA) is located in the 3'-flanking region of the perfringolysin O (pfoA) locus in Clostridium perfringens. Ohtani K; Bando M; Swe T; Banu S; Oe M; Hayashi H; Shimizu T FEMS Microbiol Lett; 1997 Jan; 146(1):155-9. PubMed ID: 9053381 [TBL] [Abstract][Full Text] [Related]
8. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. McGowan S; Lucet IS; Cheung JK; Awad MM; Whisstock JC; Rood JI J Mol Biol; 2002 Oct; 322(5):997-1011. PubMed ID: 12367524 [TBL] [Abstract][Full Text] [Related]
9. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. Ohtani K; Bhowmik SK; Hayashi H; Shimizu T FEMS Microbiol Lett; 2002 Mar; 209(1):113-8. PubMed ID: 12007663 [TBL] [Abstract][Full Text] [Related]
10. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Lyristis M; Bryant AE; Sloan J; Awad MM; Nisbet IT; Stevens DL; Rood JI Mol Microbiol; 1994 Jun; 12(5):761-77. PubMed ID: 8052128 [TBL] [Abstract][Full Text] [Related]
11. Cloning and expression in Escherichia coli of the perfringolysin O (theta-toxin) gene from Clostridium perfringens and characterization of the gene product. Tweten RK Infect Immun; 1988 Dec; 56(12):3228-34. PubMed ID: 2903127 [TBL] [Abstract][Full Text] [Related]
12. Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. Chen J; Rood JI; McClane BA mBio; 2011; 2(6):. PubMed ID: 22167225 [TBL] [Abstract][Full Text] [Related]
13. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Cheung JK; Keyburn AL; Carter GP; Lanckriet AL; Van Immerseel F; Moore RJ; Rood JI Infect Immun; 2010 Jul; 78(7):3064-72. PubMed ID: 20457789 [TBL] [Abstract][Full Text] [Related]
14. Regulation of extracellular toxin production in Clostridium perfringens. Rood JI; Lyristis M Trends Microbiol; 1995 May; 3(5):192-6. PubMed ID: 7627457 [TBL] [Abstract][Full Text] [Related]
15. Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Banu S; Ohtani K; Yaguchi H; Swe T; Cole ST; Hayashi H; Shimizu T Mol Microbiol; 2000 Feb; 35(4):854-64. PubMed ID: 10692162 [TBL] [Abstract][Full Text] [Related]
16. Identifying the Basis for VirS/VirR Two-Component Regulatory System Control of Clostridium perfringens Beta-Toxin Production. Mehdizadeh Gohari I; Li J; McClane BA J Bacteriol; 2021 Aug; 203(18):e0027921. PubMed ID: 34228498 [TBL] [Abstract][Full Text] [Related]
17. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. Adachi K; Ohtani K; Kawano M; Singh RP; Yousuf B; Sonomoto K; Shimizu T; Nakayama J J Biosci Bioeng; 2018 May; 125(5):525-531. PubMed ID: 29373309 [TBL] [Abstract][Full Text] [Related]
18. Sequence analysis of flanking regions of the pfoA gene of Clostridium perfringens: beta-galactosidase gene (pbg) is located in the 3'-flanking region. Shimizu T; Kobayashi T; Ba-Thein W; Ohtani K; Hayashi H Microbiol Immunol; 1995; 39(9):677-86. PubMed ID: 8577281 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Tweten RK Infect Immun; 1988 Dec; 56(12):3235-40. PubMed ID: 2903128 [TBL] [Abstract][Full Text] [Related]
20. Virulence genes of Clostridium perfringens. Rood JI Annu Rev Microbiol; 1998; 52():333-60. PubMed ID: 9891801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]