These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 8132461)
1. 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. Huijberts GN; de Rijk TC; de Waard P; Eggink G J Bacteriol; 1994 Mar; 176(6):1661-6. PubMed ID: 8132461 [TBL] [Abstract][Full Text] [Related]
2. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Huijberts GN; Eggink G; de Waard P; Huisman GW; Witholt B Appl Environ Microbiol; 1992 Feb; 58(2):536-44. PubMed ID: 1610179 [TBL] [Abstract][Full Text] [Related]
3. Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkanoates). Study of beta-oxidation in Pseudomonas putida. de Waard P; van der Wal H; Huijberts GN; Eggink G J Biol Chem; 1993 Jan; 268(1):315-9. PubMed ID: 8416939 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids. Ballistreri A; Giuffrida M; Guglielmino SP; Carnazza S; Ferreri A; Impallomeni G Int J Biol Macromol; 2001 Aug; 29(2):107-14. PubMed ID: 11518582 [TBL] [Abstract][Full Text] [Related]
5. Construction of pha-operon-defined knockout mutants of Pseudomonas putida KT2442 and their applications in poly(hydroxyalkanoate) production. Ouyang SP; Liu Q; Fang L; Chen GQ Macromol Biosci; 2007 Feb; 7(2):227-33. PubMed ID: 17295412 [TBL] [Abstract][Full Text] [Related]
6. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
7. Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Escapa IF; Morales V; Martino VP; Pollet E; Avérous L; García JL; Prieto MA Appl Microbiol Biotechnol; 2011 Mar; 89(5):1583-98. PubMed ID: 21267558 [TBL] [Abstract][Full Text] [Related]
8. Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Romano A; van der Plas LH; Witholt B; Eggink G; Mooibroek H Planta; 2005 Jan; 220(3):455-64. PubMed ID: 15351883 [TBL] [Abstract][Full Text] [Related]
10. PhaG-mediated synthesis of Poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Fiedler S; Steinbüchel A; Rehm BH Appl Environ Microbiol; 2000 May; 66(5):2117-24. PubMed ID: 10788390 [TBL] [Abstract][Full Text] [Related]
11. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828 [TBL] [Abstract][Full Text] [Related]
12. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655 [TBL] [Abstract][Full Text] [Related]
13. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Chen JY; Song G; Chen GQ Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091 [TBL] [Abstract][Full Text] [Related]
15. Microbial synthesis of poly(3-hydroxyalkanoates) by Pseudomonas aeruginosa from fatty acids: identification of higher monomer units and structural characterization. Barbuzzi T; Giuffrida M; Impallomeni G; Carnazza S; Ferreri A; Guglielmino SP; Ballistreri A Biomacromolecules; 2004; 5(6):2469-78. PubMed ID: 15530065 [TBL] [Abstract][Full Text] [Related]
16. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. Wang Q; Nomura CT J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. Impallomeni G; Ballistreri A; Carnemolla GM; Guglielmino SP; Nicolò MS; Cambria MG Int J Biol Macromol; 2011 Jan; 48(1):137-45. PubMed ID: 21035502 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis and characterization of poly(3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48. Chung AL; Jin HL; Huang LJ; Ye HM; Chen JC; Wu Q; Chen GQ Biomacromolecules; 2011 Oct; 12(10):3559-66. PubMed ID: 21838281 [TBL] [Abstract][Full Text] [Related]
19. Closed-loop control of bacterial high-cell-density fed-batch cultures: production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions. Kellerhals MB; Kessler B; Witholt B Biotechnol Bioeng; 1999 Nov; 65(3):306-15. PubMed ID: 10486129 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Ren Q; de Roo G; Ruth K; Witholt B; Zinn M; Thöny-Meyer L Biomacromolecules; 2009 Apr; 10(4):916-22. PubMed ID: 19267463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]