These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8132505)

  • 1. Glycogenesis from glucose and ureagenesis in isolated perfused rat livers. Influence of ammonium ion, norvaline, and ethoxyzolamide.
    Bode AM; Foster JD; Nordlie RC
    J Biol Chem; 1994 Mar; 269(11):7879-86. PubMed ID: 8132505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal effects of proline and glutamine on glycogenesis from glucose and ureagenesis in isolated, perfused rat livers.
    Bode AM; Nordlie RC
    J Biol Chem; 1993 Aug; 268(22):16298-301. PubMed ID: 8344917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbamoyl phosphate and ureagenesis are not involved in amino-acid-stimulated glycogenesis.
    Gustafson LA; Romp N; van Woerkom GM; Meijer AJ
    Eur J Biochem; 1994 Jul; 223(2):553-6. PubMed ID: 8055925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible role for carbamyl phosphate in the control of liver glycogen synthesis.
    Rognstad R
    Biochem Biophys Res Commun; 1985 Jul; 130(1):229-33. PubMed ID: 4026828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of CA V decreases glucose synthesis from pyruvate.
    Dodgson SJ; Forster RE
    Arch Biochem Biophys; 1986 Nov; 251(1):198-204. PubMed ID: 3098176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of oxidative phosphorylation, gluconeogenesis, ureagenesis and ATP turnover in isolated perfused rat liver analyzed by top-down metabolic control analysis.
    Soboll S; Oh MH; Brown GC
    Eur J Biochem; 1998 May; 254(1):194-201. PubMed ID: 9652414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms.
    Hüssinger D; Lang F; Bauers K; Gerok W
    Eur J Biochem; 1990 Nov; 193(3):891-8. PubMed ID: 2249700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative correlation of glucose uptake and phosphorylation with the activities of glucose-phosphorylating enzymes in perfused livers of fasted and fed rats.
    Alvares FL; Nordlie RC
    J Biol Chem; 1977 Dec; 252(23):8404-14. PubMed ID: 200610
    [No Abstract]   [Full Text] [Related]  

  • 9. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation.
    Martín-Requero A; Ciprés G; Rivas T; Ayuso MS; Parrilla R
    Metabolism; 1993 Dec; 42(12):1573-82. PubMed ID: 8246772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria.
    McGivan JD; Bradford NM; Mendes-Mourão J
    Biochem J; 1976 Feb; 154(2):415-21. PubMed ID: 180971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis.
    Ohtake Y; Clemens MG
    Am J Physiol; 1991 Mar; 260(3 Pt 1):E453-8. PubMed ID: 2003598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the mechanism of glycogen rebound in the liver of 72-hour fasted rats.
    Minassian C; Ajzannay A; Riou JP; Mithieux G
    J Biol Chem; 1994 Jun; 269(24):16585-8. PubMed ID: 8206976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucagon receptor signaling is not required for
    Galsgaard KD; Pedersen J; Kjeldsen SAS; Winther-Sørensen M; Stojanovska E; Vilstrup H; Ørskov C; Wewer Albrechtsen NJ; Holst JJ
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G912-G927. PubMed ID: 32174131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the control of citrulline synthesis in isolated rat-liver mitochondria.
    Wanders RJ; Van Roermund CW; Meijer AJ
    Eur J Biochem; 1984 Jul; 142(2):247-54. PubMed ID: 6745275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ornithine-urea cycle: biosynthesis and regulation of carbamyl phosphate synthetase I and ornithine transcarbamylase.
    Cohen PP
    Curr Top Cell Regul; 1981; 18():1-19. PubMed ID: 7023854
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of ammonia and norvaline on lactate metabolism by hepatocytes from starved rats. The use of 14C-labelled lactate in studies of hepatic gluconeogenesis.
    Grunnet N; Katz J
    Biochem J; 1978 Jun; 172(3):595-603. PubMed ID: 687361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of urea synthesis in rat liver. Inhibition of urea synthesis by L-norvaline.
    Saheki T; Sato Y; Takada S; Katsunuma T
    J Biochem; 1979 Sep; 86(3):745-50. PubMed ID: 511845
    [No Abstract]   [Full Text] [Related]  

  • 18. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function.
    Thomsen KL; Grønbæk H; Glavind E; Hebbard L; Jessen N; Clouston A; George J; Vilstrup H
    Am J Physiol Gastrointest Liver Physiol; 2014 Aug; 307(3):G295-301. PubMed ID: 24924745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NH4+ metabolism and the intracellular pH in isolated perfused rat liver.
    Zange J; Gronczewski J; Jans AW
    Biochem J; 1993 Aug; 293 ( Pt 3)(Pt 3):667-73. PubMed ID: 8394691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-isobutylmethylxanthine inhibits hepatic urea synthesis: protection by agmatine.
    Nissim I; Horyn O; Nissim I; Daikhin Y; Wehrli SL; Yudkoff M
    J Biol Chem; 2008 May; 283(22):15063-71. PubMed ID: 18375388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.