These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 8132527)
1. Apolipoprotein A-I metabolism in cholesteryl ester transfer protein transgenic mice. Insights into the mechanisms responsible for low plasma high density lipoprotein levels. Melchior GW; Castle CK; Murray RW; Blake WL; Dinh DM; Marotti KR J Biol Chem; 1994 Mar; 269(11):8044-51. PubMed ID: 8132527 [TBL] [Abstract][Full Text] [Related]
2. Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. Zhong S; Goldberg IJ; Bruce C; Rubin E; Breslow JL; Tall A J Clin Invest; 1994 Dec; 94(6):2457-67. PubMed ID: 7989603 [TBL] [Abstract][Full Text] [Related]
3. Differential interaction of the human cholesteryl ester transfer protein with plasma high density lipoproteins (HDLs) from humans, control mice, and transgenic mice to human HDL apolipoproteins. Lack of lipid transfer inhibitory activity in transgenic mice expressing human apoA-I. Masson D; Duverger N; Emmanuel F; Lagrost L J Biol Chem; 1997 Sep; 272(39):24287-93. PubMed ID: 9305883 [TBL] [Abstract][Full Text] [Related]
4. Human apoA-I expression in CETP transgenic rats leads to lower levels of apoC-I in HDL and to magnification of CETP-mediated lipoprotein changes. Masson D; Pais de Barros JP; Zak Z; Gautier T; Le Guern N; Assem M; Chisholm JW; Paterniti JR; Lagrost L J Lipid Res; 2006 Feb; 47(2):356-65. PubMed ID: 16282639 [TBL] [Abstract][Full Text] [Related]
5. Increased prebeta-HDL levels, cholesterol efflux, and LCAT-mediated esterification in mice expressing the human cholesteryl ester transfer protein (CETP) and human apolipoprotein A-I (apoA-I) transgenes. Francone OL; Royer L; Haghpassand M J Lipid Res; 1996 Jun; 37(6):1268-77. PubMed ID: 8808761 [TBL] [Abstract][Full Text] [Related]
6. Comparative effects of purified apolipoproteins A-I, A-II, and A-IV on cholesteryl ester transfer protein activity. Guyard-Dangremont V; Lagrost L; Gambert P J Lipid Res; 1994 Jun; 35(6):982-92. PubMed ID: 8077854 [TBL] [Abstract][Full Text] [Related]
7. Decreased cholesteryl ester transfer protein (CETP) mRNA and protein and increased high density lipoprotein following lipopolysaccharide administration in human CETP transgenic mice. Masucci-Magoulas L; Moulin P; Jiang XC; Richardson H; Walsh A; Breslow JL; Tall A J Clin Invest; 1995 Apr; 95(4):1587-94. PubMed ID: 7706465 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of enhanced cholesteryl ester transfer from high density lipoproteins to apolipoprotein B-containing lipoproteins during alimentary lipemia. Tall A; Sammett D; Granot E J Clin Invest; 1986 Apr; 77(4):1163-72. PubMed ID: 3958185 [TBL] [Abstract][Full Text] [Related]
10. Remodeling of the HDL in NIDDM: a fundamental role for cholesteryl ester transfer protein. Castle CK; Kuiper SL; Blake WL; Paigen B; Marotti KR; Melchior GW Am J Physiol; 1998 Jun; 274(6):E1091-8. PubMed ID: 9611161 [TBL] [Abstract][Full Text] [Related]
11. Thyroid hormone increases plasma cholesteryl ester transfer protein activity and plasma high-density lipoprotein removal rate in transgenic mice. Berti JA; Amaral ME; Boschero AC; Nunes VS; Harada LM; Castilho LN; Oliveira HC Metabolism; 2001 May; 50(5):530-6. PubMed ID: 11319713 [TBL] [Abstract][Full Text] [Related]
12. Delayed catabolism of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. Ikewaki K; Rader DJ; Sakamoto T; Nishiwaki M; Wakimoto N; Schaefer JR; Ishikawa T; Fairwell T; Zech LA; Nakamura H J Clin Invest; 1993 Oct; 92(4):1650-8. PubMed ID: 8408618 [TBL] [Abstract][Full Text] [Related]
13. Molecular determinants of plasma cholesteryl ester transfer protein binding to high density lipoproteins. Bruce C; Davidson WS; Kussie P; Lund-Katz S; Phillips MC; Ghosh R; Tall AR J Biol Chem; 1995 May; 270(19):11532-42. PubMed ID: 7744792 [TBL] [Abstract][Full Text] [Related]
14. Dissociation of lipid-free apolipoprotein A-I from high density lipoproteins. Liang HQ; Rye KA; Barter PJ J Lipid Res; 1994 Jul; 35(7):1187-99. PubMed ID: 7964180 [TBL] [Abstract][Full Text] [Related]
15. Characterization of cholesteryl ester transfer protein inhibitor from plasma of baboons (Papio sp.). Kushwaha RS; Hasan SQ; McGill HC; Getz GS; Dunham RG; Kanda P J Lipid Res; 1993 Aug; 34(8):1285-97. PubMed ID: 8409763 [TBL] [Abstract][Full Text] [Related]
16. An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels. Hayek T; Chajek-Shaul T; Walsh A; Agellon LB; Moulin P; Tall AR; Breslow JL J Clin Invest; 1992 Aug; 90(2):505-10. PubMed ID: 1644921 [TBL] [Abstract][Full Text] [Related]
17. ApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. Escolà-Gil JC; Julve J; Marzal-Casacuberta A; Ordóñez-Llanos J; González-Sastre F; Blanco-Vaca F J Lipid Res; 2001 Feb; 42(2):241-8. PubMed ID: 11181754 [TBL] [Abstract][Full Text] [Related]
18. Hypertriglyceridemia and cholesteryl ester transfer protein interact to dramatically alter high density lipoprotein levels, particle sizes, and metabolism. Studies in transgenic mice. Hayek T; Azrolan N; Verdery RB; Walsh A; Chajek-Shaul T; Agellon LB; Tall AR; Breslow JL J Clin Invest; 1993 Sep; 92(3):1143-52. PubMed ID: 8376576 [TBL] [Abstract][Full Text] [Related]
19. Cholesteryl ester transfer activity in liver disease and cholestasis, and its relation with fatty acid composition of lipoprotein lipids. Iglesias A; Arranz M; Alvarez JJ; Perales J; Villar J; Herrera E; Lasunción MA Clin Chim Acta; 1996 Apr; 248(2):157-74. PubMed ID: 8740580 [TBL] [Abstract][Full Text] [Related]
20. Co-expression of cholesteryl ester transfer protein and defective apolipoprotein E in transgenic mice alters plasma cholesterol distribution. Implications for the pathogenesis of type III hyperlipoproteinemia. Fazio S; Marotti KR; Lee YL; Castle CK; Melchior GW; Rall SC J Biol Chem; 1994 Dec; 269(51):32368-72. PubMed ID: 7798236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]