These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 8132548)
1. Identification of an essential cysteine residue in pyridoxal phosphatase from human erythrocytes. Gao G; Fonda ML J Biol Chem; 1994 Mar; 269(11):8234-9. PubMed ID: 8132548 [TBL] [Abstract][Full Text] [Related]
2. Function and reactivity of sulfhydryl groups of rat liver glycine methyltransferase. Fujioka M; Takata Y; Konishi K; Ogawa H Biochemistry; 1987 Sep; 26(18):5696-702. PubMed ID: 3676278 [TBL] [Abstract][Full Text] [Related]
4. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Salleh HM; Patel MA; Woodard RW Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430 [TBL] [Abstract][Full Text] [Related]
5. Sulfhydryl chemistry of Salmonella typhimurium phosphoribosylpyrophosphate synthetase: identification of two classes of cysteinyl residues. Harlow KW; Switzer RL Arch Biochem Biophys; 1990 Feb; 276(2):466-72. PubMed ID: 2154950 [TBL] [Abstract][Full Text] [Related]
6. Probing the active site of Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase using covalent modification of cysteine residues. Kanaani J; Somoza JR; Maltby D; Wang CC Eur J Biochem; 1996 Aug; 239(3):764-72. PubMed ID: 8774725 [TBL] [Abstract][Full Text] [Related]
7. Aspartyl peptide labeled by 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate in the allosteric ADP site of pig heart NAD+-dependent isocitrate dehydrogenase. Huang YC; Colman RF J Biol Chem; 1989 Jul; 264(21):12208-14. PubMed ID: 2745437 [TBL] [Abstract][Full Text] [Related]
8. Identification and localization of a cysteinyl residue critical for the trypsin-like catalytic activity of the proteasome. Dick LR; Moomaw CR; Pramanik BC; DeMartino GN; Slaughter CA Biochemistry; 1992 Aug; 31(32):7347-55. PubMed ID: 1510924 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a phosphoenzyme intermediate formed during catalysis by pyridoxal phosphatase from human erythrocytes. Gao GJ; Fonda ML Arch Biochem Biophys; 1994 Aug; 313(1):166-72. PubMed ID: 8053678 [TBL] [Abstract][Full Text] [Related]
10. Sequence of the N-terminal formic acid fragment and location of the N-ethylmaleimide-binding site of the phosphate transport protein from beef heart mitochondria. Kolbe HV; Wohlrab H J Biol Chem; 1985 Dec; 260(29):15899-906. PubMed ID: 4066697 [TBL] [Abstract][Full Text] [Related]
11. Identification of the essential cysteine residue in the active site of bovine pyruvate dehydrogenase. Ali MS; Roche TE; Patel MS J Biol Chem; 1993 Oct; 268(30):22353-6. PubMed ID: 8226745 [TBL] [Abstract][Full Text] [Related]
12. The role of cysteine in the alteration of bovine liver dihydrodiol dehydrogenase 3 activity. Nanjo H; Adachi H; Aketa M; Mizoguchi T; Nishihara T; Terada T Biochem J; 1995 Aug; 310 ( Pt 1)(Pt 1):101-7. PubMed ID: 7646430 [TBL] [Abstract][Full Text] [Related]
13. Recombinant rat liver guanidinoacetate methyltransferase: reactivity and function of sulfhydryl groups. Fujioka M; Konishi K; Takata Y Biochemistry; 1988 Oct; 27(20):7658-64. PubMed ID: 3207695 [TBL] [Abstract][Full Text] [Related]
14. Identification of an active site cysteine residue in human type I Ins(1,4,5)P3 5-phosphatase by chemical modification and site-directed mutagenesis. Communi D; Erneux C Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):181-6. PubMed ID: 8947484 [TBL] [Abstract][Full Text] [Related]
15. Thiolation of low-Mr phosphotyrosine protein phosphatase by thiol-disulfides. Degl'Innocenti D; Caselli A; Rosati F; Marzocchini R; Manao G; Camici G; Ramponi G IUBMB Life; 1999 Nov; 48(5):505-11. PubMed ID: 10637766 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis. Ploux O; Lei Y; Vatanen K; Liu HW Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227 [TBL] [Abstract][Full Text] [Related]
17. Specific modification of the condensation domain of fatty acid synthase and the determination of the primary structure of the modified active site peptides. Poulose AJ; Bonsall RF; Kolattukudy PE Arch Biochem Biophys; 1984 Apr; 230(1):117-28. PubMed ID: 6712225 [TBL] [Abstract][Full Text] [Related]
18. The identification of a structurally important cysteine residue in the glycerol dehydrogenase from Bacillus stearothermophilus. Spencer P; Scawen MD; Atkinson T; Gore MG Biochim Biophys Acta; 1991 Mar; 1073(2):386-93. PubMed ID: 2009285 [TBL] [Abstract][Full Text] [Related]
19. The functional role of cysteines in isopenicillin N synthase. Correlation of cysteine reactivities toward sulfhydryl reagents with kinetic properties of cysteine mutants. Kriauciunas A; Frolik CA; Hassell TC; Skatrud PL; Johnson MG; Holbrook NL; Chen VJ J Biol Chem; 1991 Jun; 266(18):11779-88. PubMed ID: 2050677 [TBL] [Abstract][Full Text] [Related]
20. Role of the reactive cysteine residue in restriction endonuclease Cfr9I. Siksnys V; Pleckaityte M Biochim Biophys Acta; 1992 Nov; 1160(2):199-205. PubMed ID: 1332782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]