These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8132560)
1. Intracellular analysis of in vitro modified HIV Tat protein. Koken SE; Greijer AE; Verhoef K; van Wamel J; Bukrinskaya AG; Berkhout B J Biol Chem; 1994 Mar; 269(11):8366-75. PubMed ID: 8132560 [TBL] [Abstract][Full Text] [Related]
2. Distinct transcriptional pathways of TAR-dependent and TAR-independent human immunodeficiency virus type-1 transactivation by Tat. Yang L; Morris GF; Lockyer JM; Lu M; Wang Z; Morris CB Virology; 1997 Aug; 235(1):48-64. PubMed ID: 9300036 [TBL] [Abstract][Full Text] [Related]
3. Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. Carruth LM; Hardwick JM; Morse BA; Clements JE J Virol; 1994 Oct; 68(10):6137-46. PubMed ID: 8083955 [TBL] [Abstract][Full Text] [Related]
4. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Fridell RA; Harding LS; Bogerd HP; Cullen BR Virology; 1995 Jun; 209(2):347-57. PubMed ID: 7778269 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the effect of natural sequence variation in Tat and in cyclin T on the formation and RNA binding properties of Tat-cyclin T complexes. Bieniasz PD; Grdina TA; Bogerd HP; Cullen BR J Virol; 1999 Jul; 73(7):5777-86. PubMed ID: 10364329 [TBL] [Abstract][Full Text] [Related]
6. Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1. Kim YS; Kim JM; Jung DL; Kang JE; Lee S; Kim JS; Seol W; Shin HC; Kwon HS; Van Lint C; Hernandez N; Hur MW J Biol Chem; 2005 Jun; 280(22):21545-52. PubMed ID: 15743774 [TBL] [Abstract][Full Text] [Related]
7. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. Scala G; Ruocco MR; Ambrosino C; Mallardo M; Giordano V; Baldassarre F; Dragonetti E; Quinto I; Venuta S J Exp Med; 1994 Mar; 179(3):961-71. PubMed ID: 8113688 [TBL] [Abstract][Full Text] [Related]
8. Biological activity and intracellular location of the Tat protein of equine infectious anemia virus. Rosin-Arbesfeld R; Mashiah P; Willbold D; Rosch P; Tronick SR; Yaniv A; Gazit A Gene; 1994 Dec; 150(2):307-11. PubMed ID: 7821797 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. Jeang KT; Chun R; Lin NH; Gatignol A; Glabe CG; Fan H J Virol; 1993 Oct; 67(10):6224-33. PubMed ID: 7690421 [TBL] [Abstract][Full Text] [Related]
10. HIV-1 Tat protein is poly(ADP-ribosyl)ated in vitro. Kameoka M; Tanaka Y; Ota K; Itaya A; Yamamoto K; Yoshihara K Biochem Biophys Res Commun; 1999 Jul; 261(1):90-4. PubMed ID: 10405328 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional activation in vitro by the human immunodeficiency virus type 1 Tat protein: evidence for specific interaction with a coactivator(s). Song CZ; Loewenstein PM; Green M Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9357-61. PubMed ID: 7937769 [TBL] [Abstract][Full Text] [Related]
12. Purification and functional characterization of wild-type and mutant HIV-1 and HIV-2 Tat proteins expressed in Escherichia coli. Orsini MJ; García-Martínez LF; Mavankal G; Gaynor RB; Debouck CM Protein Expr Purif; 1996 Sep; 8(2):238-46. PubMed ID: 8812870 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. Furia B; Deng L; Wu K; Baylor S; Kehn K; Li H; Donnelly R; Coleman T; Kashanchi F J Biol Chem; 2002 Feb; 277(7):4973-80. PubMed ID: 11739381 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of HIV-1 long terminal repeat trans-activation. Use of intragenic ribozyme to assess rate-limiting steps. Jeang KT; Berkhout B J Biol Chem; 1992 Sep; 267(25):17891-9. PubMed ID: 1517225 [TBL] [Abstract][Full Text] [Related]
15. The VP16 transcription activation domain is functional when targeted to a promoter-proximal RNA sequence. Tiley LS; Madore SJ; Malim MH; Cullen BR Genes Dev; 1992 Nov; 6(11):2077-87. PubMed ID: 1427073 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Tao J; Frankel AD Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1571-5. PubMed ID: 8434019 [TBL] [Abstract][Full Text] [Related]
17. Selective infection of human T-lymphotropic virus type 1 (HTLV-1)-infected cells by chimeric human immunodeficiency viruses containing HTLV-1 tax response elements in the long terminal repeat. Lin HC; Bodkin M; Lal RB; Rabson AB J Virol; 1995 Nov; 69(11):7216-25. PubMed ID: 7474143 [TBL] [Abstract][Full Text] [Related]
18. HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Kato H; Sumimoto H; Pognonec P; Chen CH; Rosen CA; Roeder RG Genes Dev; 1992 Apr; 6(4):655-66. PubMed ID: 1559613 [TBL] [Abstract][Full Text] [Related]
19. Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator. Desai-Yajnik V; Hadzic E; Modlinger P; Malhotra S; Gechlik G; Samuels HH J Virol; 1995 Aug; 69(8):5103-12. PubMed ID: 7609079 [TBL] [Abstract][Full Text] [Related]
20. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. Sawaya BE; Khalili K; Gordon J; Taube R; Amini S J Biol Chem; 2000 Nov; 275(45):35209-14. PubMed ID: 10931842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]