These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8133268)

  • 1. The level of GAD67 protein is highly sensitive to small increases in intraneuronal gamma-aminobutyric acid levels.
    Rimvall K; Martin DL
    J Neurochem; 1994 Apr; 62(4):1375-81. PubMed ID: 8133268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of increased gamma-aminobutyric acid levels on GAD67 protein and mRNA levels in rat cerebral cortex.
    Rimvall K; Sheikh SN; Martin DL
    J Neurochem; 1993 Feb; 60(2):714-20. PubMed ID: 8419546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of single and multiple increasing doses of vigabatrin on brain GABA metabolism and correlation with vigabatrin plasma concentration.
    Valdizán EM; Armijo JA
    Biochem Pharmacol; 1992 May; 43(10):2143-50. PubMed ID: 1599502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevation of brain GABA levels with vigabatrin (gamma-vinylGABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain.
    Sheikh SN; Martin DL
    J Neurosci Res; 1998 Jun; 52(6):736-41. PubMed ID: 9669322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of GAD expression in rat pancreatic islets and brain by gamma-vinyl-GABA and glucose.
    Petersen JS; Rimvall K; Jørgensen PN; Hasselager E; Moody A; Hejnaes K; Clausen JT; Dyrberg T
    Diabetologia; 1998 May; 41(5):530-5. PubMed ID: 9628269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.
    Neal MJ; Shah MA
    Br J Pharmacol; 1990 Jun; 100(2):324-8. PubMed ID: 2379037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive period of mice inhibitory system to neonatal GABA enhancement by vigabatrin is brain region dependent.
    Levav-Rabkin T; Melamed O; Clarke G; Farber M; Cryan JF; Dinan TG; Grossman Y; Golan HM
    Neuropsychopharmacology; 2010 Apr; 35(5):1138-54. PubMed ID: 20043003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between platelet and brain GABA transaminase inhibition by single and multiple doses of vigabatrin in rats.
    Valdizán EM; Armijo JA
    Epilepsia; 1991; 32(5):735-42. PubMed ID: 1915185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased intracellular gamma-aminobutyric acid selectively lowers the level of the larger of two glutamate decarboxylase proteins in cultured GABAergic neurons from rat cerebral cortex.
    Rimvall K; Martin DL
    J Neurochem; 1992 Jan; 58(1):158-66. PubMed ID: 1727428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased GAD67 mRNA levels are correlated with in vivo GABA synthesis in the MPTP-treated catecholamine-depleted goldfish brain.
    Hibbert B; Fung I; McAuley R; Larivière K; MacNeil B; Bafi-Yeboa N; Livesey J; Trudeau V
    Brain Res Mol Brain Res; 2004 Sep; 128(2):121-30. PubMed ID: 15363887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAergic dysfunction in mGlu7 receptor-deficient mice as reflected by decreased levels of glutamic acid decarboxylase 65 and 67kDa and increased reelin proteins in the hippocampus.
    Wierońska JM; Brański P; Siwek A; Dybala M; Nowak G; Pilc A
    Brain Res; 2010 Jun; 1334():12-24. PubMed ID: 20353761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions.
    Kaufman DL; Houser CR; Tobin AJ
    J Neurochem; 1991 Feb; 56(2):720-3. PubMed ID: 1988566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus.
    Sloviter RS; Dichter MA; Rachinsky TL; Dean E; Goodman JH; Sollas AL; Martin DL
    J Comp Neurol; 1996 Sep; 373(4):593-618. PubMed ID: 8889946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ethanol on gamma-vinyl GABA-induced GABA accumulation in the substantia nigra and on synaptosomal GABA content in six rat brain regions.
    Frye GD; Fincher AS
    Brain Res; 1988 May; 449(1-2):71-9. PubMed ID: 3395859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of gamma-vinyl GABA (vigabatrin) on blood pressure and body weight of hypertensive and normotensive rats.
    Singewald N; Pfitscher A; Philippu A
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Feb; 345(2):181-6. PubMed ID: 1570022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus.
    Freichel C; Potschka H; Ebert U; Brandt C; Löscher W
    Neuroscience; 2006 Sep; 141(4):2177-94. PubMed ID: 16797850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential localization of two glutamic acid decarboxylases (GAD65 and GAD67) in adult monkey visual cortex.
    Hendrickson AE; Tillakaratne NJ; Mehra RD; Esclapez M; Erickson A; Vician L; Tobin AJ
    J Comp Neurol; 1994 May; 343(4):566-81. PubMed ID: 8034788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vigabatrin on the electroencephalogram in rats.
    Halonen T; Pitkänen A; Koivisto E; Partanen J; Riekkinen PJ
    Epilepsia; 1992; 33(1):122-7. PubMed ID: 1733745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia.
    Dracheva S; Elhakem SL; McGurk SR; Davis KL; Haroutunian V
    J Neurosci Res; 2004 May; 76(4):581-92. PubMed ID: 15114630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-vinyl GABA: comparison of neurochemical and anticonvulsant effects in mice.
    Bernasconi R; Klein M; Martin P; Christen P; Hafner T; Portet C; Schmutz M
    J Neural Transm; 1988; 72(3):213-33. PubMed ID: 3418334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.