BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8133289)

  • 1. Muscle mitochondrial ATP production in progressive supranuclear palsy.
    Di Monte DA; Harati Y; Jankovic J; Sandy MS; Jewell SA; Langston JW
    J Neurochem; 1994 Apr; 62(4):1631-4. PubMed ID: 8133289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of endurance training and creatine depletion on regional mitochondrial adaptations in rat skeletal muscle.
    Roussel D; Lhenry F; Ecochard L; Sempore B; Rouanet JL; Favier R
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):547-53. PubMed ID: 10947970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cobalt on mitochondrial ATP-production in the rat myocardium and skeletal muscle.
    Clyne N; Wibom R; Havu N; Hultman E; Lins LE; Pehrsson SK; Persson B; Rydström J
    Scand J Clin Lab Invest; 1990 Apr; 50(2):153-9. PubMed ID: 2339279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training.
    Berthon P; Freyssenet D; Chatard JC; Castells J; Mujika I; Geyssant A; Guezennec CY; Denis C
    Acta Physiol Scand; 1995 Jun; 154(2):269-74. PubMed ID: 7572222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive method for measuring ATP-formation in rat muscle mitochondria.
    Wibom R; Lundin A; Hultman E
    Scand J Clin Lab Invest; 1990 Apr; 50(2):143-52. PubMed ID: 2339278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dysfunction in progressive supranuclear palsy.
    Albers DS; Beal MF
    Neurochem Int; 2002 May; 40(6):559-64. PubMed ID: 11850113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production.
    Charles AL; Meyer A; Dal-Ros S; Auger C; Keller N; Ramamoorthy TG; Zoll J; Metzger D; Schini-Kerth V; Geny B
    Exp Physiol; 2013 Feb; 98(2):536-45. PubMed ID: 22903980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the P/2e- stoichiometries at the individual coupling sites in mitochondrial oxidative phosphorylation. Evidence for maximum values of 1.0, 0.5, and 1.0 at sites 1, 2, and 3.
    Stoner CD
    J Biol Chem; 1987 Aug; 262(22):10445-53. PubMed ID: 3611076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further evidence for mitochondrial dysfunction in progressive supranuclear palsy.
    Albers DS; Swerdlow RH; Manfredi G; Gajewski C; Yang L; Parker WD; Beal MF
    Exp Neurol; 2001 Mar; 168(1):196-8. PubMed ID: 11170735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology.
    Janssen AJ; Trijbels FJ; Sengers RC; Wintjes LT; Ruitenbeek W; Smeitink JA; Morava E; van Engelen BG; van den Heuvel LP; Rodenburg RJ
    Clin Chem; 2006 May; 52(5):860-71. PubMed ID: 16543390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysfunctional mitochondrial respiration in the wobbler mouse brain.
    Xu GP; Dave KR; Moraes CT; Busto R; Sick TJ; Bradley WG; Pérez-Pinzón MA
    Neurosci Lett; 2001 Mar; 300(3):141-4. PubMed ID: 11226631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarographic analyses of subsarcolemmal and intermyofibrillar mitochondria from rat skeletal and cardiac muscle.
    Manneschi L; Federico A
    J Neurol Sci; 1995 Feb; 128(2):151-6. PubMed ID: 7738591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative energy metabolism in germ-free and conventional rat liver mitochondria.
    Sewell DL; Wostmann BS; Gairola C; Aleem MI
    Am J Physiol; 1975 Feb; 228(2):526-9. PubMed ID: 1122009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contralateral leg as a control during skeletal muscle ischemia-reperfusion.
    Thaveau F; Zoll J; Bouitbir J; Ribera F; Di Marco P; Chakfe N; Kretz JG; Piquard F; Geny B
    J Surg Res; 2009 Jul; 155(1):65-9. PubMed ID: 19159910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Existence of 2 sites of oxidative phosphorylation in Trypanosoma cruzi].
    Affranchino JL; Stoppani AO
    Rev Argent Microbiol; 1985; 17(2):81-7. PubMed ID: 3916670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR; Denton RM
    Biochem J; 1971 Nov; 125(1):105-13. PubMed ID: 5158897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the translocation of oxaloacetate and L-malate into rat liver mitochondria.
    Haslam JM; Griffiths DE
    Biochem J; 1968 Oct; 109(5):921-8. PubMed ID: 4235143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status.
    Tonkonogi M; Sahlin K
    Acta Physiol Scand; 1997 Nov; 161(3):345-53. PubMed ID: 9401587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle mitochondrial ATP production rate and walking performance in peripheral arterial disease.
    Hou XY; Green S; Askew CD; Barker G; Green A; Walker PJ
    Clin Physiol Funct Imaging; 2002 May; 22(3):226-32. PubMed ID: 12076351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxaloacetate permeation in rat kidney mitochondria: pyruvate/oxaloacetate and malate/oxaloacetate translocators.
    Passarella S; Atlante A; Quagliariello E
    Biochem Biophys Res Commun; 1985 May; 129(1):1-10. PubMed ID: 4004869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.