These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8133739)

  • 1. Testing models of respiratory control in skeletal muscle.
    Meyer RA; Foley JM
    Med Sci Sports Exerc; 1994 Jan; 26(1):52-7. PubMed ID: 8133739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of oxygen consumption in fast- and slow-twitch muscle.
    Kushmerick MJ; Meyer RA; Brown TR
    Am J Physiol; 1992 Sep; 263(3 Pt 1):C598-606. PubMed ID: 1415510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure.
    Bigard AX; Boehm E; Veksler V; Mateo P; Anflous K; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 Nov; 30(11):2391-401. PubMed ID: 9925374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle.
    Meyer RA; Brown TR; Kushmerick MJ
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C279-87. PubMed ID: 3976878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus NMR spectroscopy of cat biceps and soleus muscles.
    Kushmerick MJ; Meyer RA; Brown TR
    Adv Exp Med Biol; 1983; 159():303-25. PubMed ID: 6637620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of high-energy substrates in fast- and slow-twitch muscle: comparison of enzymatic assay of biopsy with in vivo 31P nuclear magnetic resonance spectroscopy.
    Madapallimattam AG; Cross A; Nishio ML; Jeejeebhoy KN
    Anal Biochem; 1994 Feb; 217(1):103-9. PubMed ID: 8203725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acidosis on control of respiration in skeletal muscle.
    Harkema SJ; Meyer RA
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C491-500. PubMed ID: 9124292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linear model of muscle respiration explains monoexponential phosphocreatine changes.
    Meyer RA
    Am J Physiol; 1988 Apr; 254(4 Pt 1):C548-53. PubMed ID: 3354652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic status and mitochondrial oxidative capacity of rat skeletal muscle in response to creatine analogue ingestion.
    Freyssenet D; Berthon P; Barthélémy JC; Busso T; Geyssant A; Denis C
    Biochim Biophys Acta; 1995 Mar; 1228(2-3):211-5. PubMed ID: 7893727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Energy metabolism in skeletal muscles in experimental traumatic shock].
    Kazueva TV; Kovrizhnykh EE; Kuz'mina RI; Assur MV
    Vopr Med Khim; 1987; 33(4):40-2. PubMed ID: 3660738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy.
    Pedersen BL; Arendrup H; Secher NH; Quistorff B
    Exp Physiol; 2006 Jul; 91(4):755-63. PubMed ID: 16675500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in inorganic phosphate in mouse hindlimb muscles during limb disuse.
    Pathare N; Vandenborne K; Liu M; Stevens JE; Li Y; Frimel TN; Walter GA
    NMR Biomed; 2008 Feb; 21(2):101-10. PubMed ID: 17516466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity.
    Paganini AT; Foley JM; Meyer RA
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C501-10. PubMed ID: 9124293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine.
    Milatovic D; Gupta RC; Dekundy A; Montine TJ; Dettbarn WD
    Toxicology; 2005 Mar; 208(1):13-24. PubMed ID: 15664429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of respiration kinetics and protein composition of skinned fibers from various types of rat muscle.
    Voloshchuk SG; Belikova YO; Klyushnik TP; Benevolensky DS; Saks VA
    Biochemistry (Mosc); 1998 Feb; 63(2):155-8. PubMed ID: 9526107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.