These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8133739)

  • 21. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Correlation between heat production of a muscle tetanized at 20 degrees and phosphorylcreatine and nucleotide consumption].
    Canfield P; Lebacq J; Maréchal G
    J Physiol (Paris); 1971; 63(6):181A. PubMed ID: 5152214
    [No Abstract]   [Full Text] [Related]  

  • 23. Adenine nucleotide degradation in slow-twitch red muscle.
    Tullson PC; Whitlock DM; Terjung RL
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C258-65. PubMed ID: 2305868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle buffer capacity estimated from pH changes during rest-to-work transitions.
    Adams GR; Foley JM; Meyer RA
    J Appl Physiol (1985); 1990 Sep; 69(3):968-72. PubMed ID: 2246184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study.
    Balschi JA; Henderson T; Bradley EL; Gelman S
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of a short-term dietary creatine supplementation on high-energy phosphates in the rat myocardium.
    Brzezińska Z; Nazar K; Kaciuba-Uściłko H; Falecka-Wieczorek I; Wójcik-Ziółkowska E
    J Physiol Pharmacol; 1998 Dec; 49(4):591-5. PubMed ID: 10069699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle.
    Meyer RA; Adams GR; Fisher MJ; Dillon PF; Krisanda JM; Brown TR; Kushmerick MJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):305-10. PubMed ID: 1905190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Adenine nucleotide and creatine phosphate levels in rat skeletal muscles and myocardium in myorelaxation].
    Krapivina OV
    Ukr Biokhim Zh (1978); 1985; 57(4):70-2. PubMed ID: 4035798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Some indices of energetic metabolism in the skeletal muscles in regeneration].
    Pkhakadze GA; Burenko GV; Komisarenko SV
    Ukr Biokhim Zh; 1970; 42(6):703-8. PubMed ID: 5513581
    [No Abstract]   [Full Text] [Related]  

  • 31. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice.
    Roman BB; Meyer RA; Wiseman RW
    Am J Physiol Cell Physiol; 2002 Dec; 283(6):C1776-83. PubMed ID: 12419710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of VO2 in red muscle: do current biochemical hypotheses fit in vivo data?
    Connett RJ; Honig CR
    Am J Physiol; 1989 Apr; 256(4 Pt 2):R898-906. PubMed ID: 2705578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous recording of intracellular reduced pyridine nucleotide changes in skeletal muscle in vivo.
    Chance B
    Tex Rep Biol Med; 1964 Dec; 22():Suppl 1:836-41. PubMed ID: 4284088
    [No Abstract]   [Full Text] [Related]  

  • 34. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types.
    Tullson PC; John-Alder HB; Hood DA; Terjung RL
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C271-7. PubMed ID: 3421309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of oxygen deprivation on incubated rat soleus muscle.
    Fagan JM; Tischler ME
    Life Sci; 1989; 44(10):677-81. PubMed ID: 2927239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular electrical characteristics of amphibian muscle: role of charges on some energy containing substances.
    Swami KS; Indira K
    Indian J Exp Biol; 1967 Oct; 5(4):259-60. PubMed ID: 5583864
    [No Abstract]   [Full Text] [Related]  

  • 37. [Phosphorylcreatine and adenine nucleotides in a striated muscle at the end of a stretching].
    Maréchal G; Beckers-Bleukx G
    J Physiol (Paris); 1965; 57(5):652-3. PubMed ID: 5847128
    [No Abstract]   [Full Text] [Related]  

  • 38. Systemic metabolic effects observed in muscle tissue after high energy missile trauma.
    Larsson J; Lennquist S; Lovén L; Lewis DH; Liljedahl SO
    Acta Chir Scand Suppl; 1982; 508():323-6. PubMed ID: 6952696
    [No Abstract]   [Full Text] [Related]  

  • 39. Non-P(i) buffer capacity and initial phosphocreatine breakdown and resynthesis kinetics of human gastrocnemius/soleus muscle groups using 0.5 s time-resolved (31)P MRS at 4.1 T.
    Newcomer BR; Boska MD; Hetherington HP
    NMR Biomed; 1999 Dec; 12(8):545-51. PubMed ID: 10668047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrimidine nucleotide biosynthesis and turnover in rat skeletal muscle and liver.
    Rasenack J; Nowack J; Decker K
    Eur J Biochem; 1978 Aug; 88(2):475-82. PubMed ID: 689033
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.