These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8133754)

  • 1. MR imaging of flow through tortuous vessels: a numerical simulation.
    van Tyen R; Saloner D; Jou LD; Berger S
    Magn Reson Med; 1994 Feb; 31(2):184-95. PubMed ID: 8133754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow.
    Box FM; van der Geest RJ; Rutten MC; Reiber JH
    Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional magnetization-prepared time-of-flight MR angiography of the carotid and vertebral arteries.
    Wilman AH; Huston J; Riederer SJ
    Magn Reson Med; 1997 Feb; 37(2):252-9. PubMed ID: 9001150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding.
    Schubert T; Bieri O; Pansini M; Stippich C; Santini F
    Invest Radiol; 2014 Apr; 49(4):189-94. PubMed ID: 24300842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary flow in the human common carotid artery imaged by MR angiography.
    Caro CG; Dumoulin CL; Graham JM; Parker KH; Souza SP
    J Biomech Eng; 1992 Feb; 114(1):147-9. PubMed ID: 1491578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of magnetic resonance angiographies of an anatomically realistic stenotic carotid bifurcation.
    Lorthois S; Stroud-Rossman J; Berger S; Jou LD; Saloner D
    Ann Biomed Eng; 2005 Mar; 33(3):270-83. PubMed ID: 15868718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Various issues relating to computational fluid dynamics simulations of carotid bifurcation flow based on models reconstructed from three-dimensional ultrasound images.
    Augst AD; Barratt DC; Hughes AD; Thom SA; Xu XY
    Proc Inst Mech Eng H; 2003; 217(5):393-403. PubMed ID: 14558652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the magnetization distribution for fluid flow in curved vessels.
    Jou LD; van Tyen R; Berger SA; Saloner D
    Magn Reson Med; 1996 Apr; 35(4):577-84. PubMed ID: 8992209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and quantification of the human blood flow by magnetic resonance imaging.
    Boesiger P; Maier SE; Kecheng L; Scheidegger MB; Meier D
    J Biomech; 1992 Jan; 25(1):55-67. PubMed ID: 1733984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of physiologic waveform variability in triggered MR imaging: theoretical analysis.
    Lauzon ML; Holdsworth DW; Frayne R; Rutt BK
    J Magn Reson Imaging; 1994; 4(6):853-67. PubMed ID: 7865947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regularization of flow streamlines in multislice phase-contrast MR imaging.
    Fatouraee N; Amini AA
    IEEE Trans Med Imaging; 2003 Jun; 22(6):699-709. PubMed ID: 12872945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow artifacts in two-dimensional time-of-flight MR angiography: initial studies in elastic models of human carotid arteries.
    Buxton RB; Kerber CW; Frank LR
    J Magn Reson Imaging; 1993; 3(4):625-36. PubMed ID: 8347956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical study of magnetic resonance images of pulsatile flow in a two dimensional carotid bifurcation: a numerical study of MR images.
    Jou LD; Saloner D
    Med Eng Phys; 1998; 20(9):643-52. PubMed ID: 10098608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation.
    Wake AK; Oshinski JN; Tannenbaum AR; Giddens DP
    J Biomech Eng; 2009 Feb; 131(2):021013. PubMed ID: 19102572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and numerical analysis of carotid artery blood flow.
    van Steenhoven AA; van de Vosse FN; Rindt CC; Janssen JD; Reneman RS
    Monogr Atheroscler; 1990; 15():250-60. PubMed ID: 2136928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAR and STARFIRE for flow-dependent and flow-independent noncontrast carotid angiography.
    Koktzoglou I; Edelman RR
    Magn Reson Med; 2009 Jan; 61(1):117-24. PubMed ID: 19097217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of carotid blood flow velocity using MR phase mapping.
    Fürst G; Sitzer M; Hofer M; Steinmetz H; Hackländer T; Müller E; Mödder U
    J Comput Assist Tomogr; 1994; 18(5):688-96. PubMed ID: 8089314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.