These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8134018)

  • 1. Phototaxic behavior and the retinotectal transport of horseradish peroxidase (HRP) in surgically created cyclopean salamander larvae (Ambystoma).
    Pietsch P; Sato H; Noda R; Richetti S; Schneider CW
    Neurosci Res; 1993 Oct; 18(1):35-43. PubMed ID: 8134018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tectectomy in the cyclopean salamander.
    Pietsch P; Schneider CW
    Physiol Behav; 1991 Aug; 50(2):305-9. PubMed ID: 1745673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision and the skin camouflage reactions of Ambystoma larvae: the effects of eye transplants and brain lesions.
    Pietsch P; Schneider CW
    Brain Res; 1985 Aug; 340(1):37-60. PubMed ID: 4027646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the normal and regenerated retinotectal pathways of goldfish.
    Stuermer CA; Easter SS
    J Comp Neurol; 1984 Feb; 223(1):57-76. PubMed ID: 6200514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section.
    Straznicky C; Tay D
    J Comp Neurol; 1982 Apr; 206(2):119-30. PubMed ID: 7085924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comments on the topography of the crossed isthmo-tectal projection in the frog].
    Gaillard F
    C R Seances Acad Sci III; 1983; 296(18):865-70. PubMed ID: 6192883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplanted eyes of foreign donors can reinstate the optically activated skin camouflage reactions in bilaterally enucleated salamanders (Ambystoma).
    Pietsch P; Schneider CW
    Brain Behav Evol; 1988; 32(6):364-70. PubMed ID: 3228692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measures of phototaxis and movement detection in the larval salamander.
    Schneider CW; Marquette BW; Pietsch P
    Physiol Behav; 1991 Sep; 50(3):645-7. PubMed ID: 1801024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anterograde HRP study of the retinotectal pathways in albino and pigmented guinea pigs.
    Jen LS; So KF; Chang AB
    Brain Res; 1983 Mar; 263(2):331-5. PubMed ID: 6301649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constant occurrence of an ipsilateral retino-tectal projection in the axolotl (Ambystoma mexicanum) revealed by horseradish peroxidase tracing.
    Ingham CA; Güldner FH
    Neurosci Lett; 1980 Apr; 17(1-2):17-22. PubMed ID: 7052461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of retinotectal projections after optic tectum removal in adult newts.
    Okamoto M; Ohsawa H; Hayashi T; Owaribe K; Tsonis PA
    Mol Vis; 2007 Nov; 13():2112-8. PubMed ID: 18079683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of an abnormal ipsilateral visuotectal projection in Xenopus is delayed by the presence of optic fibres from the other eye.
    Straznicky C; Tay D; Glastonbury J
    J Embryol Exp Morphol; 1980 Jun; 57():129-41. PubMed ID: 7430926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic refinement of the regenerating retinotectal projection of the goldfish in standard laboratory conditions: a quantitative WGA-HRP study.
    Rankin EC; Cook JE
    Exp Brain Res; 1986; 63(2):409-20. PubMed ID: 3758258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired refinement of the regenerated retinotectal projection of the goldfish in stroboscopic light: a quantitative WGA-HRP study.
    Cook JE; Rankin EC
    Exp Brain Res; 1986; 63(2):421-30. PubMed ID: 3758259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the stability of positional markers in the goldfish tectum.
    Busse U; Stuermer CA
    J Comp Neurol; 1989 Oct; 288(4):538-54. PubMed ID: 2808749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection.
    Meyer RL; Sakurai K; Schauwecker E
    J Comp Neurol; 1985 Sep; 239(1):27-43. PubMed ID: 4044930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of abnormal lamination and binocular segregation in the retinotectal pathways of the rat.
    Serfaty CA; Linden R
    Brain Res Dev Brain Res; 1994 Oct; 82(1-2):35-44. PubMed ID: 7531121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disconnected optic axons persist in the visual pathway during regeneration of the retino-tectal projection in the frog.
    Humphrey MF; Dunlop SA; Shimada A; Beazley LD
    Exp Brain Res; 1992; 90(3):630-4. PubMed ID: 1385202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.