These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8134021)

  • 1. Retinal differentiation from multipotential pineal cells of the embryonic quail.
    Araki M; Kodama R; Eguchi G; Yasujima M; Orii H; Watanabe K
    Neurosci Res; 1993 Oct; 18(1):63-72. PubMed ID: 8134021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predominant melanogenesis and lentoidogenesis in vitro from multipotent pineal cells by dimethyl sulfoxide and hexamethylene bisacetamide.
    Orii H; Hyuga M; Mochii M; Kosaka J; Eguchi G; Watanabe K
    Int J Dev Biol; 1994 Jun; 38(2):397-404. PubMed ID: 7981050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential enhancement of neural and photoreceptor cell differentiation of cultured pineal cells by FGF-1, IGF-1, and EGF.
    Araki M; Suzuki H; Layer P
    Dev Neurobiol; 2007 Oct; 67(12):1641-54. PubMed ID: 17577207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of pinopsin-immunoreactive cells in the developing quail pineal organ: an in-vivo and in-vitro immunohistochemical study.
    Yamao M; Araki M; Okano T; Fukada Y; Oishi T
    Cell Tissue Res; 1999 Jun; 296(3):667-71. PubMed ID: 10370152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The embryonic pineal body as a multipotent organ.
    Watanabe K; Araki M; Iwasaki H
    Microsc Res Tech; 1992 May; 21(3):218-26. PubMed ID: 1606317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of gonadal steroids on pineal morphogenesis and cell differentiation of the embryonic quail studied under cell culture conditions.
    Haldar C; Fukada Y; Araki M
    Brain Res Dev Brain Res; 2003 Oct; 145(1):71-9. PubMed ID: 14519495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusible factors produced by cultured neural retinal cells enhance in vitro differentiation of pineal cone photoreceptors of developing quail embryos.
    Araki M
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):71-8. PubMed ID: 9466709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of both rod and cone types of photoreceptors in the in vivo and in vitro developing pineal glands of the quail.
    Araki M; Fukada Y; Shichida Y; Yoshizawa T; Tokunaga F
    Brain Res Dev Brain Res; 1992 Jan; 65(1):85-92. PubMed ID: 1348019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphometric analysis of photoreceptive, neuronal and endocrinal cell differentiation of avian pineal cells: an in vitro immunohistochemical study on the developmental transition from neuronal to photo-endocrinal property.
    Haldar C; Araki M
    Zoolog Sci; 2002 Jul; 19(7):781-7. PubMed ID: 12149579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An embryonic pineal body as a multipotent system in cell differentiation.
    Watanabe K; Aoyama H; Tamamaki N; Sonomura T; Okada TS; Eguchi G; Nojyo Y
    Development; 1988 May; 103(1):17-26. PubMed ID: 3197627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing rat pineal cells manifest potential of neuronal differentiation in vitro.
    Araki M; Nonaka T; Akagawa K; Kimura H; Mashiko T
    Neurosci Res; 1994 Jul; 20(1):57-69. PubMed ID: 7527132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oculopotency of embryonic quail pineals as revealed by cell culture studies.
    Watanabe K; Aoyama H; Tamamaki N; Yasujima M; Nojyo Y; Ueda Y; Okada TS
    Cell Differ; 1985 Jun; 16(4):251-7. PubMed ID: 4016958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L.
    Ostholm T; Brännäs E; van Veen T
    Cell Tissue Res; 1987 Sep; 249(3):641-6. PubMed ID: 2959366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental potency of cultured pineal cells: an approach to pineal developmental biology.
    Araki M
    Microsc Res Tech; 2001 Apr; 53(1):33-42. PubMed ID: 11279668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat.
    Araki M; Watanabe K; Tokunaga F; Nonaka T
    Cell Differ Dev; 1988 Nov; 25(2):155-63. PubMed ID: 2974750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from embryonic to adult transcription pattern of serotonin N-acetyltransferase gene in avian pineal gland.
    Obłap R; Olszańska B
    Mol Reprod Dev; 2004 Feb; 67(2):145-53. PubMed ID: 14694429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study.
    Meléndez-Ferro M; Villar-Cheda B; Abalo XM; Pérez-Costas E; Rodríguez-Muñoz R; Degrip WJ; Yáñez J; Rodicio MC; Anadón R
    J Comp Neurol; 2002 Jan; 442(3):250-65. PubMed ID: 11774340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic and GABAergic neuronal elements in the pineal organ of lampreys, and tract-tracing observations of differential connections of pinealofugal neurons.
    Pombal MA; Yáñez J; Marín O; González A; Anadón R
    Cell Tissue Res; 1999 Feb; 295(2):215-23. PubMed ID: 9931367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail.
    Foster RG; Korf HW; Schalken JJ
    Cell Tissue Res; 1987 Apr; 248(1):161-7. PubMed ID: 2952278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-dependent differentiation in nontransformed human retinal progenitor cells in response to basic fibroblast growth factor- and transforming growth factor-alpha.
    Ezeonu I; Wang M; Kumar R; Dutt K
    DNA Cell Biol; 2003 Oct; 22(10):607-20. PubMed ID: 14611682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.