BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8134103)

  • 1. Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis.
    Henkemeyer M; Marengere LE; McGlade J; Olivier JP; Conlon RA; Holmyard DP; Letwin K; Pawson T
    Oncogene; 1994 Apr; 9(4):1001-14. PubMed ID: 8134103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands.
    Holland SJ; Gale NW; Mbamalu G; Yancopoulos GD; Henkemeyer M; Pawson T
    Nature; 1996 Oct; 383(6602):722-5. PubMed ID: 8878483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cDNA cloning, molecular characterization, and chromosomal localization of NET(EPHT2), a human EPH-related receptor protein-tyrosine kinase gene preferentially expressed in brain.
    Tang XX; Biegel JA; Nycum LM; Yoshioka A; Brodeur GM; Pleasure DE; Ikegaki N
    Genomics; 1995 Sep; 29(2):426-37. PubMed ID: 8666391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons.
    Beltran PJ; Bixby JL; Masters BA
    J Comp Neurol; 2003 Feb; 456(4):384-95. PubMed ID: 12532410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments.
    Gale NW; Flenniken A; Compton DC; Jenkins N; Copeland NG; Gilbert DJ; Davis S; Wilkinson DG; Yancopoulos GD
    Oncogene; 1996 Sep; 13(6):1343-52. PubMed ID: 8808709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation.
    Orioli D; Henkemeyer M; Lemke G; Klein R; Pawson T
    EMBO J; 1996 Nov; 15(22):6035-49. PubMed ID: 8947026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells.
    Holland SJ; Gale NW; Gish GD; Roth RA; Songyang Z; Cantley LC; Henkemeyer M; Yancopoulos GD; Pawson T
    EMBO J; 1997 Jul; 16(13):3877-88. PubMed ID: 9233798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the expression of the Cek8 receptor-type tyrosine kinase during development and in tumor cell lines.
    Soans C; Holash JA; Pasquale EB
    Oncogene; 1994 Nov; 9(11):3353-61. PubMed ID: 7936661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Eph receptors and ephrins in segmental patterning.
    Xu Q; Mellitzer G; Wilkinson DG
    Philos Trans R Soc Lond B Biol Sci; 2000 Jul; 355(1399):993-1002. PubMed ID: 11128993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain.
    Xu Q; Alldus G; Macdonald R; Wilkinson DG; Holder N
    Nature; 1996 May; 381(6580):319-22. PubMed ID: 8692269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development.
    Ganju P; Shigemoto K; Brennan J; Entwistle A; Reith AD
    Oncogene; 1994 Jun; 9(6):1613-24. PubMed ID: 8183555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cDNA cloning, chromosomal localization, and expression pattern of EPLG8, a new member of the EPLG gene family encoding ligands of EPH-related protein-tyrosine kinase receptors.
    Tang XX; Pleasure DE; Ikegaki N
    Genomics; 1997 Apr; 41(1):17-24. PubMed ID: 9126477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor.
    Yu HH; Zisch AH; Dodelet VC; Pasquale EB
    Oncogene; 2001 Jul; 20(30):3995-4006. PubMed ID: 11494128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of EphB2-tyrosine kinase receptor and its ligand conveys dorsalization signal in Xenopus laevis development.
    Tanaka M; Wang DY; Kamo T; Igarashi H; Wang Y; Xiang YY; Tanioka F; Naito Y; Sugimura H
    Oncogene; 1998 Sep; 17(12):1509-16. PubMed ID: 9794228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuk controls pathfinding of commissural axons in the mammalian central nervous system.
    Henkemeyer M; Orioli D; Henderson JT; Saxton TM; Roder J; Pawson T; Klein R
    Cell; 1996 Jul; 86(1):35-46. PubMed ID: 8689685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-cell interactions and segmentation in the developing vertebrate hindbrain.
    Irving C; Flenniken A; Alldus G; Wilkinson DG
    Biochem Soc Symp; 1996; 62():85-95. PubMed ID: 8971342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2.
    Himanen JP; Henkemeyer M; Nikolov DB
    Nature; 1998 Dec; 396(6710):486-91. PubMed ID: 9853759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish TrkC1 and TrkC2 receptors define two different cell populations in the nervous system during the period of axonogenesis.
    Martin SC; Sandell JH; Heinrich G
    Dev Biol; 1998 Mar; 195(2):114-30. PubMed ID: 9520329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
    Braisted JE; McLaughlin T; Wang HU; Friedman GC; Anderson DJ; O'leary DD
    Dev Biol; 1997 Nov; 191(1):14-28. PubMed ID: 9356168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of the Krox-20 gene in the development of rhombencephalon].
    Schneider-Maunoury S; Seitanidou T; Topilko P; Vesque C; Frain M; Gilardi-Hebenstreit P; Charnay P
    C R Seances Soc Biol Fil; 1997; 191(1):91-4. PubMed ID: 9181130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.