These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8134278)

  • 1. Fatigue testing of energy storing prosthetic feet.
    Toh SL; Goh JC; Tan PH; Tay TE
    Prosthet Orthot Int; 1993 Dec; 17(3):180-8. PubMed ID: 8134278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM; Gitter A; Munro C
    J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.
    Gitter A; Czerniecki JM; DeGroot DM
    Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet.
    Gardiner J; Bari AZ; Howard D; Kenney L
    J Rehabil Res Dev; 2016; 53(6):1133-1138. PubMed ID: 28355033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of prosthetic feet used in low-income countries.
    Sam M; Hansen AH; Childress DS
    Prosthet Orthot Int; 2004 Aug; 28(2):132-40. PubMed ID: 15382807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and dynamic characterization of prosthetic feet for high activity users during weighted and unweighted walking.
    Koehler-McNicholas SR; Nickel EA; Barrons K; Blaharski KE; Dellamano CA; Ray SF; Schnall BL; Hendershot BD; Hansen AH
    PLoS One; 2018; 13(9):e0202884. PubMed ID: 30208040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial and torsional stiffness of pediatric prosthetic feet.
    Taboga P; Grabowski AM
    Clin Biomech (Bristol); 2017 Feb; 42():47-54. PubMed ID: 28095358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet.
    Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK
    J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness and hysteresis properties of some prosthetic feet.
    van Jaarsveld HW; Grootenboer HJ; de Vries J; Koopman HF
    Prosthet Orthot Int; 1990 Dec; 14(3):117-24. PubMed ID: 2095529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re: "Fatigue testing of energy storing prosthetic feet", pp 180-188, volume 17, 1993.
    Cousins SJ
    Prosthet Orthot Int; 1994 Aug; 18(2):124. PubMed ID: 7991362
    [No Abstract]   [Full Text] [Related]  

  • 12. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation.
    Barr AE; Siegel KL; Danoff JV; McGarvey CL; Tomasko A; Sable I; Stanhope SJ
    Phys Ther; 1992 May; 72(5):344-54. PubMed ID: 1631203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet.
    Webber CM; Kaufman K
    Prosthet Orthot Int; 2017 Oct; 41(5):463-468. PubMed ID: 28008788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical testing of prosthetic feet utilized in low-income countries according to ISO-10328 standard.
    Jensen JS; Treichl HB
    Prosthet Orthot Int; 2007 Jun; 31(2):177-206. PubMed ID: 17520495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing forefoot and heel stiffnesses across commercial prosthetic feet manufactured for individuals with varying body weights and foot sizes.
    Ruxin TR; Halsne EG; Turner AT; Curran CS; Caputo JM; Hansen AH; Hafner BJ; Morgenroth DC
    Prosthet Orthot Int; 2022 Oct; 46(5):425-431. PubMed ID: 35426860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy costs & performance of transtibial amputees & non-amputees during walking & running.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy storing property of so-called energy-storing prosthetic feet.
    Ehara Y; Beppu M; Nomura S; Kunimi Y; Takahashi S
    Arch Phys Med Rehabil; 1993 Jan; 74(1):68-72. PubMed ID: 8420524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry in external work (SEW): a novel method of quantifying gait differences between prosthetic feet.
    Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Dowell T
    Prosthet Orthot Int; 2009 Jun; 33(2):148-56. PubMed ID: 19367518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor.
    Postema K; Hermens HJ; de Vries J; Koopman HF; Eisma WH
    Prosthet Orthot Int; 1997 Apr; 21(1):28-34. PubMed ID: 9141123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.