These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 8134338)

  • 21. Transcriptional activation by p53 correlates with suppression of growth but not transformation.
    Crook T; Marston NJ; Sara EA; Vousden KH
    Cell; 1994 Dec; 79(5):817-27. PubMed ID: 8001119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression.
    Unger T; Mietz JA; Scheffner M; Yee CL; Howley PM
    Mol Cell Biol; 1993 Sep; 13(9):5186-94. PubMed ID: 8355677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional regulation by p53. Functional interactions among multiple regulatory domains.
    Hsu YS; Tang FM; Liu WL; Chuang JY; Lai MY; Lin YS
    J Biol Chem; 1995 Mar; 270(12):6966-74. PubMed ID: 7896847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53.
    Kunz C; Pebler S; Otte J; von der Ahe D
    Nucleic Acids Res; 1995 Sep; 23(18):3710-7. PubMed ID: 7479001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence.
    Johnson TM; Meade K; Pathak N; Marques MR; Attardi LD
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1215-20. PubMed ID: 18216268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong transcriptional activators isolated from viral DNA by the 'activator trap', a novel selection system in mammalian cells.
    Gstaiger M; Schaffner W
    Nucleic Acids Res; 1994 Oct; 22(20):4031-8. PubMed ID: 7937127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system.
    Luo Y; Batalao A; Zhou H; Zhu L
    Biotechniques; 1997 Feb; 22(2):350-2. PubMed ID: 9043710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial oncoproteins: modified versions of the yeast bZip protein GCN4 induce cellular transformation.
    Nishizawa M; Fu SL; Kataoka K; Vogt PK
    Oncogene; 2003 Sep; 22(39):7931-41. PubMed ID: 12970741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast SUB1 is a suppressor of TFIIB mutations and has homology to the human co-activator PC4.
    Knaus R; Pollock R; Guarente L
    EMBO J; 1996 Apr; 15(8):1933-40. PubMed ID: 8617240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CTS1: a p53-derived chimeric tumor suppressor gene with enhanced in vitro apoptotic properties.
    Conseiller E; Debussche L; Landais D; Venot C; Maratrat M; Sierra V; Tocque B; Bracco L
    J Clin Invest; 1998 Jan; 101(1):120-7. PubMed ID: 9421473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The basic carboxy-terminal domain of human p53 is dispensable for both transcriptional regulation and inhibition of tumor cell growth.
    Pellegata NS; Cajot JF; Stanbridge EJ
    Oncogene; 1995 Jul; 11(2):337-49. PubMed ID: 7624148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro.
    Suckow M; Hollenberg CP
    J Mol Biol; 1998 Mar; 276(5):887-902. PubMed ID: 9566194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of partial loss of function p53 gene mutations utilizing a yeast-based functional assay.
    Kovvali GK; Mehta B; Epstein CB; Lutzker SG
    Nucleic Acids Res; 2001 Mar; 29(5):E28. PubMed ID: 11222779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.
    Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA
    Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An artificial transcriptional activating region with unusual properties.
    Lu X; Ansari AZ; Ptashne M
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1988-92. PubMed ID: 10681438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein.
    Liu WL; Midgley C; Stephen C; Saville M; Lane DP
    J Mol Biol; 2001 Nov; 313(4):711-31. PubMed ID: 11697899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ability to associate with activation domains in vitro is not required for the TATA box-binding protein to support activated transcription in vivo.
    Tansey WP; Herr W
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10550-4. PubMed ID: 7479838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mammalian two-hybrid system for adenomatous polyposis coli-mutated colon cancer therapeutics.
    Wakita K; Tetsu O; McCormick F
    Cancer Res; 2001 Feb; 61(3):854-8. PubMed ID: 11221869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of p51/p63 missense mutations on transcriptional activities of p53 downstream gene promoters.
    Kato S; Shimada A; Osada M; Ikawa S; Obinata M; Nakagawara A; Kanamaru R; Ishioka C
    Cancer Res; 1999 Dec; 59(23):5908-11. PubMed ID: 10606233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.