BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8134386)

  • 1. Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle.
    Marty I; Robert M; Villaz M; De Jongh K; Lai Y; Catterall WA; Ronjat M
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2270-4. PubMed ID: 8134386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H; Takeshima H; Nishimura S; Takahashi M; Tanabe T; Flockerzi V; Hofmann F; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1995 Oct; 16(5):465-80. PubMed ID: 8567934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity [3H]PN200-110 and [3H]ryanodine binding to rabbit and frog skeletal muscle.
    Anderson K; Cohn AH; Meissner G
    Am J Physiol; 1994 Feb; 266(2 Pt 1):C462-6. PubMed ID: 8141261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of junctional complexes from triad junctions of rabbit skeletal muscle.
    Motoike HK; Caswell AH; Smilowitz HM; Brandt NR
    J Muscle Res Cell Motil; 1994 Oct; 15(5):493-504. PubMed ID: 7860698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratio of dihydropyridine to ryanodine receptors in mammalian and frog twitch muscles in relation to the mechanical hypothesis of excitation-contraction coupling.
    Margreth A; Damiani E; Tobaldin G
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1303-11. PubMed ID: 8280147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor.
    Nakai J; Dirksen RT; Nguyen HT; Pessah IN; Beam KG; Allen PD
    Nature; 1996 Mar; 380(6569):72-5. PubMed ID: 8598910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A monoclonal antibody to the beta subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain omega-conotoxin GVIA receptor.
    Sakamoto J; Campbell KP
    J Biol Chem; 1991 Oct; 266(28):18914-9. PubMed ID: 1655767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads.
    Murray BE; Ohlendieck K
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):689-96. PubMed ID: 9182735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the dihydropyridine receptor and internal Ca2+ stores in myoblast fusion.
    Seigneurin-Venin S; Parrish E; Marty I; Rieger F; Romey G; Villaz M; Garcia L
    Exp Cell Res; 1996 Mar; 223(2):301-7. PubMed ID: 8601407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal differences in the induction of dihydropyridine receptor subunits and ryanodine receptors during skeletal muscle development.
    Kyselovic J; Leddy JJ; Ray A; Wigle J; Tuana BS
    J Biol Chem; 1994 Aug; 269(34):21770-7. PubMed ID: 8063821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunolocalization of triadin, DHP receptors, and ryanodine receptors in adult and developing skeletal muscle of rats.
    Carl SL; Felix K; Caswell AH; Brandt NR; Brunschwig JP; Meissner G; Ferguson DG
    Muscle Nerve; 1995 Nov; 18(11):1232-43. PubMed ID: 7565919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channels in the sarcoplasmic reticulum of striated muscle.
    Dulhunty AF; Junankar PR; Eager KR; Ahern GP; Laver DR
    Acta Physiol Scand; 1996 Mar; 156(3):375-85. PubMed ID: 8729698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling.
    Bers DM; Stiffel VM
    Am J Physiol; 1993 Jun; 264(6 Pt 1):C1587-93. PubMed ID: 8333507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct binding of verapamil to the ryanodine receptor channel of sarcoplasmic reticulum.
    Valdivia HH; Valdivia C; Ma J; Coronado R
    Biophys J; 1990 Aug; 58(2):471-81. PubMed ID: 2169916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ.
    Yuan SH; Arnold W; Jorgensen AO
    J Cell Biol; 1991 Jan; 112(2):289-301. PubMed ID: 1846372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional nonequality of the cardiac and skeletal ryanodine receptors.
    Nakai J; Ogura T; Protasi F; Franzini-Armstrong C; Allen PD; Beam KG
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):1019-22. PubMed ID: 9023375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubilization and biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes.
    McPherson PS; Campbell KP
    J Biol Chem; 1990 Oct; 265(30):18454-60. PubMed ID: 2211713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of dihydropyridine receptor and ryanodine receptor gene expression in regenerating skeletal muscle.
    Péréon Y; Navarro J; Sorrentino V; Louboutin JP; Noireaud J; Palade P
    Pflugers Arch; 1997 Jan; 433(3):221-9. PubMed ID: 9064636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.