These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8134971)

  • 1. Temperature elevation in focused Gaussian ultrasonic beams at various insonation times.
    Filipczyński L; Kujawska T; Wojcik J
    Ultrasound Med Biol; 1993; 19(8):667-79. PubMed ID: 8134971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of transient temperature elevation in lithotripsy and in ultrasonography.
    Filipczyński L; Wójcik J
    Ultrasound Med Biol; 1991; 17(7):715-21. PubMed ID: 1781075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature elevations computed for three-layer and four-layer obstetrical tissue models in nonlinear and linear ultrasonic propagation cases.
    Wójcik J; Filipczyński L; Kujawska T
    Ultrasound Med Biol; 1999 Feb; 25(2):259-67. PubMed ID: 10320315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature rise in a tissue-mimicking material generated by unfocused and focused ultrasonic transducers.
    Wu J; Chase JD; Zhu Z; Holzapfel TP
    Ultrasound Med Biol; 1992; 18(5):495-512. PubMed ID: 1509624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature elevation generated by a focused Gaussian ultrasonic beam at a tissue-bone interface.
    Wu JR; Du GH
    J Acoust Soc Am; 1990 Jun; 87(6):2748-55. PubMed ID: 2197307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface.
    Myers MR
    J Acoust Soc Am; 2004 Jun; 115(6):2887-91. PubMed ID: 15237812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-time temperature rise due to absorption of focused gaussian beams in tissue.
    Myers MR
    J Acoust Soc Am; 2006 Dec; 120(6):4064-70. PubMed ID: 17225432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature elevation generated by a focused Gaussian beam of ultrasound.
    Wu JR; Du GH
    Ultrasound Med Biol; 1990; 16(5):489-98. PubMed ID: 2238255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time to threshold (TT), a safety parameter for heating by diagnostic ultrasound.
    Lubbers J; Hekkenberg RT; Bezemer RA
    Ultrasound Med Biol; 2003 May; 29(5):755-64. PubMed ID: 12754075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of heat conduction and sample size on ultrasonic absorption measurements.
    Parker KJ
    J Acoust Soc Am; 1985 Feb; 77(2):719-25. PubMed ID: 3973241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.
    Hu J; Qian S; Ding Y
    Ultrasonics; 2010 May; 50(6):628-33. PubMed ID: 20156630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry.
    Dragonu I; de Oliveira PL; Laurent C; Mougenot C; Grenier N; Moonen CT; Quesson B
    NMR Biomed; 2009 Oct; 22(8):843-51. PubMed ID: 19562728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia.
    Hynynen K; DeYoung D
    Int J Hyperthermia; 1988; 4(3):267-79. PubMed ID: 3290347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of blood flow using temperature decay: effect of thermal conduction.
    Sandhu TS
    Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):373-8. PubMed ID: 3957736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood perfusion and thermal conduction effects in Gaussian beam, minimum time single-pulse thermal therapies.
    Cheng KS; Roemer RB
    Med Phys; 2005 Feb; 32(2):311-7. PubMed ID: 15789574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.
    Nell DM; Myers MR
    J Acoust Soc Am; 2010 Jan; 127(1):549-59. PubMed ID: 20059000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pulsed ultrasound and temperature on the development of rat embryos in culture.
    Angles JM; Walsh DA; Li K; Barnett SB; Edwards MJ
    Teratology; 1990 Sep; 42(3):285-93. PubMed ID: 2274894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.