These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8134976)

  • 1. A real time system for quantifying and displaying two-dimensional velocities using ultrasound.
    Bohs LN; Friemel BH; McDermott BA; Trahey GE
    Ultrasound Med Biol; 1993; 19(9):751-61. PubMed ID: 8134976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking a novel ultrasound-CT fusion system for respiratory motion management in radiotherapy: assessment of spatio-temporal characteristics and comparison to 4DCT.
    Molloy JA; Oldham SA
    Med Phys; 2008 Jan; 35(1):291-300. PubMed ID: 18293584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time system for angle-independent US of blood flow in two dimensions: initial results.
    Bohs LN; Friemel BH; McDermott BA; Trahey GE
    Radiology; 1993 Jan; 186(1):259-61. PubMed ID: 8416575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional flow images by reconstruction from two-dimensional vector velocity maps.
    Bohs LN; Friemel BH; Kisslo J; Harfe DT; Nightingale KR; Trahey GE
    J Am Soc Echocardiogr; 1995; 8(6):915-23. PubMed ID: 8611292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for estimating blood velocities using ultrasound.
    Jensen JA
    Ultrasonics; 2000 Mar; 38(1-8):358-62. PubMed ID: 10829688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo lateral blood flow velocity measurement using speckle size estimation.
    Xu T; Hozan M; Bashford GR
    Ultrasound Med Biol; 2014 May; 40(5):931-7. PubMed ID: 24462149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion.
    Bohs LN; Trahey GE
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):280-6. PubMed ID: 2066142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rotating cylinder phantom for flow and tissue color Doppler testing.
    Walker A; Henriksen E; Ringqvist I; Ask P
    Ultrasound Med Biol; 2009 Nov; 35(11):1892-8. PubMed ID: 19713031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking.
    Bohs LN; Friemel BH; Trahey GE
    Ultrasound Med Biol; 1995; 21(7):885-98. PubMed ID: 7491744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time digital processing of Doppler ultrasound signals and calculation of flow parameters.
    Schlindwein FS; Vieira MH; Vasconcelos CF; Simpson DM
    Med Prog Technol; 1994; 20(1-2):81-9. PubMed ID: 7968870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral blood flow velocity estimation based on ultrasound speckle size change with scan velocity.
    Xu T; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2695-703. PubMed ID: 21156365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive assessment of normal carotid bifurcation hemodynamics with color-flow ultrasound imaging.
    Zierler RE; Phillips DJ; Beach KW; Primozich JF; Strandness DE
    Ultrasound Med Biol; 1987 Aug; 13(8):471-6. PubMed ID: 3660494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speckle tracking for multi-dimensional flow estimation.
    Bohs LN; Geiman BJ; Anderson ME; Gebhart SC; Trahey GE
    Ultrasonics; 2000 Mar; 38(1-8):369-75. PubMed ID: 10829690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac motion can alter proximal isovelocity surface area calculations of regurgitant flow.
    Cape EG; Kim YH; Heinrich RS; Grimes RY; Muralidharan E; Broder JD; Schwammenthal E; Yoganathan AP; Levine RA
    J Am Coll Cardiol; 1993 Nov; 22(6):1730-7. PubMed ID: 8227847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.
    Zierler RE; Leotta DF; Sansom K; Aliseda A; Anderson MD; Sheehan FH
    Vasc Endovascular Surg; 2016 Jul; 50(5):309-16. PubMed ID: 27206747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
    Fadnes S; Nyrnes SA; Torp H; Lovstakken L
    Ultrasound Med Biol; 2014 Oct; 40(10):2379-91. PubMed ID: 25023104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of flow convergence estimates of mitral regurgitant flow rates obtained by use of multiple color flow Doppler M-mode aliasing boundaries: an experimental animal study.
    Zhang J; Jones M; Shandas R; Valdes-Cruz LM; Murillo A; Yamada I; Kang SU; Weintraub RG; Shiota T; Sahn DJ
    Am Heart J; 1993 Feb; 125(2 Pt 1):449-58. PubMed ID: 8427140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison Between Compounding Techniques Using Large Beam-Steered Plane Wave Imaging for Blood Vector Velocity Imaging in a Carotid Artery Model.
    Saris AE; Hansen HH; Fekkes S; Nillesen MM; Rutten MC; de Korte CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1758-1771. PubMed ID: 27824559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.