These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 8134977)

  • 1. Correction of phase aberrations for sectored annular array ultrasound transducers.
    Gambetti C; Foster SF
    Ultrasound Med Biol; 1993; 19(9):763-76. PubMed ID: 8134977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase aberration correction in two dimensions using a deformable array transducer.
    Ries LL; Smith SW
    Ultrason Imaging; 1995 Jul; 17(3):227-47. PubMed ID: 8772265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor.
    Nock L; Trahey GE; Smith SW
    J Acoust Soc Am; 1989 May; 85(5):1819-33. PubMed ID: 2732378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom.
    Filoux E; Mamou J; Aristizábal O; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):994-1005. PubMed ID: 21622055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A digital annular array prototype scanner for realtime ultrasound imaging.
    Foster FS; Larson JD; Pittaro RJ; Corl PD; Greenstein AP; Lum PK
    Ultrasound Med Biol; 1989; 15(7):661-72. PubMed ID: 2683292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase aberration correction using echo signals from moving targets. II: Experimental system and results.
    Bohs LN; Zhao D; Trahey GE
    Ultrason Imaging; 1992 Apr; 14(2):111-20. PubMed ID: 1604753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correspondence - Characterization of the effective performance of a high-frequency annular-array-based imaging system using anechoic-pipe phantoms.
    Filoux E; Mamou J; Moran CM; Pye SD; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2825-30. PubMed ID: 23221233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.
    Ivancevich NM; Dahl JJ; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2157-66. PubMed ID: 19942503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.
    Gurun G; Zahorian JS; Sisman A; Karaman M; Hasler PE; Degertekin FL
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):454-67. PubMed ID: 23853232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a 12 element annular array transducer for realtime ultrasound imaging.
    Foster FS; Larson JD; Mason MK; Shoup TS; Nelson G; Yoshida H
    Ultrasound Med Biol; 1989; 15(7):649-59. PubMed ID: 2683291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 32 x 32 element row-column addressed capacitive micromachined ultrasonic transducer.
    Logan AS; Wong LL; Chen AI; Yeow JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1266-71. PubMed ID: 21693409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effect of subcutaneous fat on image quality performance of 2D conventional imaging and tissue harmonic imaging.
    Browne JE; Watson AJ; Hoskins PR; Elliott AT
    Ultrasound Med Biol; 2005 Jul; 31(7):957-64. PubMed ID: 15972201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.
    Silverman RH; Ketterling JA; Coleman DJ
    Ophthalmology; 2007 Apr; 114(4):816-22. PubMed ID: 17141314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound.
    Ziksari MS; Asl BM
    Ultrasonics; 2017 Mar; 75():71-79. PubMed ID: 27939788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overdetermined least-squares aberration estimates using common-midpoint signals.
    Haun MA; Jones DL; O'Brien WD
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1205-20. PubMed ID: 15493689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical analysis of decorrelation-based transducer tracking for three-dimensional ultrasound.
    Smith W; Fenster A
    Med Phys; 2003 Jul; 30(7):1580-91. PubMed ID: 12906176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An FPGA-based ultrasound imaging system using capacitive micromachined ultrasonic transducers.
    Wong LL; Chen AI; Logan AS; Yeow JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1513-20. PubMed ID: 22828846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
    Rao M; Varghese T
    J Acoust Soc Am; 2008 Sep; 124(3):1858-65. PubMed ID: 19045676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.