These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8134979)

  • 1. Acoustic properties of lesions generated with an ultrasound therapy system.
    Bush NL; Rivens I; ter Haar GR; Bamber JC
    Ultrasound Med Biol; 1993; 19(9):789-801. PubMed ID: 8134979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterization of a blood mimicking fluid for high intensity focused ultrasound.
    Liu Y; Maruvada S; King RL; Herman BA; Wear KA
    J Acoust Soc Am; 2008 Sep; 124(3):1803-10. PubMed ID: 19045670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment.
    Zderic V; Keshavarzi A; Andrew MA; Vaezy S; Martin RW
    Ultrasound Med Biol; 2004 Jan; 30(1):61-6. PubMed ID: 14962609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential attenuation imaging for the characterization of high intensity focused ultrasound lesions.
    Ribault M; Chapelon JY; Cathignol D; Gelet A
    Ultrason Imaging; 1998 Jul; 20(3):160-77. PubMed ID: 9921617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.
    Chen J; Hou GY; Marquet F; Han Y; Camarena F; Konofagou E
    Phys Med Biol; 2015 Oct; 60(19):7499-512. PubMed ID: 26371501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation coefficient and sound speed in human myometrium and uterine fibroid tumors.
    Keshavarzi A; Vaezy S; Kaczkowski PJ; Keilman G; Martin R; Chi EY; Garcia R; Fujimoto VY
    J Ultrasound Med; 2001 May; 20(5):473-80. PubMed ID: 11345104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of histochemical preparation on acoustic parameters of liver tissue: a 5-MHz study.
    van der Steen AF; Cuypers MH; Thijssen JM; de Wilde PC
    Ultrasound Med Biol; 1991; 17(9):879-91. PubMed ID: 1725228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions generated by high intensity focused ultrasound.
    Choi MJ; Guntur SR; Lee KI; Paeng DG; Coleman A
    Ultrasound Med Biol; 2013 Mar; 39(3):439-48. PubMed ID: 23312531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic attenuation imaging of tissue bulk properties with a priori information.
    Hooi FM; Kripfgans O; Carson PL
    J Acoust Soc Am; 2016 Sep; 140(3):2113. PubMed ID: 27914403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in ultrasonic properties of liver tissue in vitro during heating-cooling cycle concomitant with thermal coagulation.
    Choi MJ; Guntur SR; Lee JM; Paeng DG; Lee KI; Coleman A
    Ultrasound Med Biol; 2011 Dec; 37(12):2000-12. PubMed ID: 22107907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum acoustic frequency for focused ultrasound surgery.
    Hill CR
    Ultrasound Med Biol; 1994; 20(3):271-7. PubMed ID: 8059488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On observing acoustic backscattering from salinity turbulence.
    Goodman L; Sastre-Cordova MM
    J Acoust Soc Am; 2011 Aug; 130(2):707-15. PubMed ID: 21877785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved tissue-mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions with high-intensity focused ultrasound.
    Guntur SR; Choi MJ
    Ultrasound Med Biol; 2014 Nov; 40(11):2680-91. PubMed ID: 25220272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
    Huang CC
    Phys Med Biol; 2010 Oct; 55(19):5801-15. PubMed ID: 20844333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Properties of Small Animal Soft Tissue in the Frequency Range 12-32 MHz.
    Rabell-Montiel A; Thomson AJ; Anderson TA; Pye SD; Moran CM
    Ultrasound Med Biol; 2018 Mar; 44(3):702-713. PubMed ID: 29277451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.