These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8135085)

  • 41. Retrograde neuronal labeling of motoneurons in the rat by fluorescent tracers, and quantitative analysis of oxidative enzyme activity in labeled neurons.
    Ishihara A; Taguchi S; Araki H; Nishihira Y
    Neurosci Lett; 1991 Apr; 124(2):141-3. PubMed ID: 1712435
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-weight-bearing condition arrests the morphological and metabolic changes of rat soleus motoneurons during postnatal growth.
    Nakano H; Katsuta S
    Neurosci Lett; 2000 Aug; 290(2):145-8. PubMed ID: 10936698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of altered muscle activation on oxidative enzyme activity in rat alpha-motoneurons.
    Seburn K; Coicou C; Gardiner P
    J Appl Physiol (1985); 1994 Nov; 77(5):2269-74. PubMed ID: 7868444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic variation among rat lumbosacral alpha-motoneurons.
    Sickles DW; McLendon RE
    Histochemistry; 1983; 79(2):205-17. PubMed ID: 6689005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of cell body size and oxidative enzyme activity in motoneurons between the cervical and lumbar segments in the rat spinal cord after spaceflight and recovery.
    Ishihara A; Yamashiro J; Matsumoto A; Higashibata A; Ishioka N; Shimazu T; Ohira Y
    Neurochem Res; 2006 Mar; 31(3):411-5. PubMed ID: 16733817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth-related changes in cell body size and succinate dehydrogenase activity of spinal motoneurons innervating the rat soleus muscle.
    Ishihara A; Kawano F; Ishioka N; Oishi H; Higashibata A; Shimazu T; Ohira Y
    Int J Dev Neurosci; 2003 Dec; 21(8):461-9. PubMed ID: 14659997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developmental changes in the intra-acinar distribution of succinate dehydrogenase, glutamate dehydrogenase, glucose-6-phosphatase, and NADPH dehydrogenase in the rat liver.
    Sokal EM; Trivedi P; Portmann B; Mowat AP
    J Pediatr Gastroenterol Nutr; 1989 May; 8(4):522-7. PubMed ID: 2542510
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activities of enzymes related to NADPH generation and amino acid metabolism in the ruminal mucosa of sheep.
    Weekes TE
    J Nutr; 1984 Sep; 114(9):1724-32. PubMed ID: 6470829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of hypophysectomy on soleus muscle fibers and spinal motoneurons in rats.
    Ishihara A; Itoh K; Itoh M; Hirofuji C; Hayashi H
    Acta Neuropathol; 1995; 89(3):204-8. PubMed ID: 7754741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uveoscleral outflow in dog's eye: role of several enzymes.
    Cavallotti C; Pescosolido N; Artico M; Cavallotti D
    Int Ophthalmol; 1998-1999; 22(4):233-8. PubMed ID: 10674868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histochemical and functional correlations in anterior horn neurons of the cat spinal cord.
    Campa JF; Engel WK
    Science; 1971 Jan; 171(3967):198-9. PubMed ID: 5538830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A threshold dose of heavy ion radiation that decreases the oxidative enzyme activity of spinal motoneurons in rats.
    Ishihara A; Nagatomo F; Fujino H; Kondo H; Nojima K
    Neurochem Res; 2012 Feb; 37(2):387-93. PubMed ID: 22015976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The development of the spinal motor column in relation to the myotomal muscle fibers in the zebrafish (Brachydanio rerio). I. Posthatching development.
    van Raamsdonk W; Mos W; Smit-Onel MJ; van der Laarse WJ; Fehres R
    Anat Embryol (Berl); 1983; 167(1):125-39. PubMed ID: 6881540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decreased succinate dehydrogenase activity of gamma and alpha motoneurons in mouse spinal cords following 13 weeks of exposure to microgravity.
    Ishihara A; Nagatomo F; Fujino H; Kondo H; Ohira Y
    Neurochem Res; 2013 Oct; 38(10):2160-7. PubMed ID: 23943522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glutamate Dehydrogenase as a Neuroprotective Target Against Neurodegeneration.
    Kim AY; Baik EJ
    Neurochem Res; 2019 Jan; 44(1):147-153. PubMed ID: 29357018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. α -Ketoglutarate accumulation is not dependent on isocitrate dehydrogenase activity during tellurite detoxification in Escherichia coli.
    Reinoso CA; Appanna VD; Vásquez CC
    Biomed Res Int; 2013; 2013():784190. PubMed ID: 24371831
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in glucose 6-phosphate dehydrogenase activity in developing embryonic chick skeletal muscle and spinal cord.
    Lyles JM; Weill CL
    Dev Neurosci; 1986; 8(1):44-52. PubMed ID: 3743468
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship between soma diameter and oxidative enzyme activity of alpha-motoneurons.
    Miyata H; Kawai Y
    Brain Res; 1992 May; 581(1):101-7. PubMed ID: 1498661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzyme reaction rate studies in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus.
    Straatsburg IH; De Graaf F; Van Noorden CJ; Van Raamsdonk W
    Histochem J; 1989; 21(9-10):609-17. PubMed ID: 2512271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzyme activities in the anterior horn of spinal cord after , -iminodipropionitrile.
    Schor NA; Archer K; Hartmann HA
    Exp Neurol; 1971 Nov; 33(2):351-9. PubMed ID: 4399420
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.