These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8135123)

  • 1. In vivo effects of endothelin-2, endothelin-3 and ETA receptor blockade on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U
    Acta Physiol Scand; 1994 Jan; 150(1):47-56. PubMed ID: 8135123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle.
    Ekelund U; Albert U; Edvinsson L; Mellander S
    Acta Physiol Scand; 1993 Jul; 148(3):273-83. PubMed ID: 8213182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of selective ETB-receptor stimulation on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U; Adner M; Edvinsson L; Mellander S
    Br J Pharmacol; 1994 Jul; 112(3):887-94. PubMed ID: 7921617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of angiotensin-converting enzyme inhibition on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U
    Acta Physiol Scand; 1996 Sep; 158(1):29-37. PubMed ID: 8876745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo receptor characterization of neuropeptide Y-induced effects in consecutive vascular sections of cat skeletal muscle.
    Ekelund U; Erlinge D
    Br J Pharmacol; 1997 Feb; 120(3):387-92. PubMed ID: 9031740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of glyceryl trinitrate, nitroprusside and nitric oxide on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U
    Acta Physiol Scand; 1994 Sep; 152(1):93-105. PubMed ID: 7810336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the combined ETA and ETB receptor antagonist PD145065 on arteries, arterioles, and veins in the cat hindlimb.
    Ekelund U; Adner M; Edvinsson L; Mellander S
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S211-3. PubMed ID: 8587365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sympathetic alpha-adrenergic control of large-bore arterial vessels, arterioles and veins, and of capillary pressure and fluid exchange in whole-organ cat skeletal muscle.
    Maspers M; Björnberg J; Grände PO; Mellander S
    Acta Physiol Scand; 1990 Apr; 138(4):509-21. PubMed ID: 2353580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.
    Björnberg J; Maspers M; Mellander S
    Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular effects of endothelin-1 in humans and influence of calcium channel blockade.
    Kiowski W; Linder L; Erne P
    J Hypertens Suppl; 1994 Jan; 12(1):S21-6. PubMed ID: 8207561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of endothelin in regulation of resistance, fluid-exchange, and capacitance functions of the systemic circulation.
    McNeill JR
    Can J Physiol Pharmacol; 2003 Jun; 81(6):522-32. PubMed ID: 12839264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelium-derived nitric oxide in the regulation of tonus in large-bore arterial resistance vessels, arterioles and veins in cat skeletal muscle.
    Ekelund U; Mellander S
    Acta Physiol Scand; 1990 Nov; 140(3):301-9. PubMed ID: 2082699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of effects of bosentan (Ro 47-0203), a nonpeptide endothelin ETA/ETB receptor antagonist, in the hind-limb vascular bed of the cat.
    Champion HC; Estrada LS; Estrada LN; Filep JG; Kadowitz PJ
    Can J Physiol Pharmacol; 1998 Feb; 76(2):141-7. PubMed ID: 9635152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective role of sympathetic nerve activity to exercising skeletal muscle in the regulation of capillary pressure and fluid filtration.
    Maspers M; Ekelund U; Björnberg J; Mellander S
    Acta Physiol Scand; 1991 Mar; 141(3):351-61. PubMed ID: 1858506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forearm vasoconstriction to endothelin-1 is mediated by ETA and ETB receptors in vivo in humans.
    Haynes WG; Strachan FE; Gray GA; Webb DJ
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S40-3. PubMed ID: 8587426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid transfer from skeletal muscle to blood during hemorrhage. Importance of beta adrenergic vascular mechanisms.
    Lundvall J; Hillman J
    Acta Physiol Scand; 1978 Apr; 102(4):450-8. PubMed ID: 207084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediation of endothelin-1-induced inhibition of platelet aggregation via the ETB receptor.
    McMurdo L; Lidbury PS; Thiemermann C; Vane JR
    Br J Pharmacol; 1993 Jun; 109(2):530-4. PubMed ID: 8358553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelin-1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat Skeletal muscle.
    Bentzer P; Holbeck S; Grände PO
    Microvasc Res; 2002 Jan; 63(1):50-60. PubMed ID: 11749072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylene blue attenuates vasodilation and enhances vasoconstriction in response to endothelin-1 in the pig nasal mucosa.
    Auberson S; Lacroix JS; Morel DR; Lehmann W; Lundberg JM
    Acta Physiol Scand; 1991 Jun; 142(2):149-56. PubMed ID: 1715110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin receptor mediated constriction and dilatation in feline cerebral resistance arterioles in vivo.
    Patel TR; McAuley MA; McCulloch J
    Eur J Pharmacol; 1996 Jun; 307(1):41-8. PubMed ID: 8831102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.