BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 8135123)

  • 1. In vivo effects of endothelin-2, endothelin-3 and ETA receptor blockade on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U
    Acta Physiol Scand; 1994 Jan; 150(1):47-56. PubMed ID: 8135123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle.
    Ekelund U; Albert U; Edvinsson L; Mellander S
    Acta Physiol Scand; 1993 Jul; 148(3):273-83. PubMed ID: 8213182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of selective ETB-receptor stimulation on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U; Adner M; Edvinsson L; Mellander S
    Br J Pharmacol; 1994 Jul; 112(3):887-94. PubMed ID: 7921617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of angiotensin-converting enzyme inhibition on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U
    Acta Physiol Scand; 1996 Sep; 158(1):29-37. PubMed ID: 8876745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo receptor characterization of neuropeptide Y-induced effects in consecutive vascular sections of cat skeletal muscle.
    Ekelund U; Erlinge D
    Br J Pharmacol; 1997 Feb; 120(3):387-92. PubMed ID: 9031740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of glyceryl trinitrate, nitroprusside and nitric oxide on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U
    Acta Physiol Scand; 1994 Sep; 152(1):93-105. PubMed ID: 7810336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the combined ETA and ETB receptor antagonist PD145065 on arteries, arterioles, and veins in the cat hindlimb.
    Ekelund U; Adner M; Edvinsson L; Mellander S
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S211-3. PubMed ID: 8587365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sympathetic alpha-adrenergic control of large-bore arterial vessels, arterioles and veins, and of capillary pressure and fluid exchange in whole-organ cat skeletal muscle.
    Maspers M; Björnberg J; Grände PO; Mellander S
    Acta Physiol Scand; 1990 Apr; 138(4):509-21. PubMed ID: 2353580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.
    Björnberg J; Maspers M; Mellander S
    Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular effects of endothelin-1 in humans and influence of calcium channel blockade.
    Kiowski W; Linder L; Erne P
    J Hypertens Suppl; 1994 Jan; 12(1):S21-6. PubMed ID: 8207561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of endothelin in regulation of resistance, fluid-exchange, and capacitance functions of the systemic circulation.
    McNeill JR
    Can J Physiol Pharmacol; 2003 Jun; 81(6):522-32. PubMed ID: 12839264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelium-derived nitric oxide in the regulation of tonus in large-bore arterial resistance vessels, arterioles and veins in cat skeletal muscle.
    Ekelund U; Mellander S
    Acta Physiol Scand; 1990 Nov; 140(3):301-9. PubMed ID: 2082699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of effects of bosentan (Ro 47-0203), a nonpeptide endothelin ETA/ETB receptor antagonist, in the hind-limb vascular bed of the cat.
    Champion HC; Estrada LS; Estrada LN; Filep JG; Kadowitz PJ
    Can J Physiol Pharmacol; 1998 Feb; 76(2):141-7. PubMed ID: 9635152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective role of sympathetic nerve activity to exercising skeletal muscle in the regulation of capillary pressure and fluid filtration.
    Maspers M; Ekelund U; Björnberg J; Mellander S
    Acta Physiol Scand; 1991 Mar; 141(3):351-61. PubMed ID: 1858506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forearm vasoconstriction to endothelin-1 is mediated by ETA and ETB receptors in vivo in humans.
    Haynes WG; Strachan FE; Gray GA; Webb DJ
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S40-3. PubMed ID: 8587426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid transfer from skeletal muscle to blood during hemorrhage. Importance of beta adrenergic vascular mechanisms.
    Lundvall J; Hillman J
    Acta Physiol Scand; 1978 Apr; 102(4):450-8. PubMed ID: 207084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediation of endothelin-1-induced inhibition of platelet aggregation via the ETB receptor.
    McMurdo L; Lidbury PS; Thiemermann C; Vane JR
    Br J Pharmacol; 1993 Jun; 109(2):530-4. PubMed ID: 8358553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelin-1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat Skeletal muscle.
    Bentzer P; Holbeck S; Grände PO
    Microvasc Res; 2002 Jan; 63(1):50-60. PubMed ID: 11749072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylene blue attenuates vasodilation and enhances vasoconstriction in response to endothelin-1 in the pig nasal mucosa.
    Auberson S; Lacroix JS; Morel DR; Lehmann W; Lundberg JM
    Acta Physiol Scand; 1991 Jun; 142(2):149-56. PubMed ID: 1715110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin receptor mediated constriction and dilatation in feline cerebral resistance arterioles in vivo.
    Patel TR; McAuley MA; McCulloch J
    Eur J Pharmacol; 1996 Jun; 307(1):41-8. PubMed ID: 8831102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.