These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 813576)
21. The effect of composition of parenteral solution on the thermal resistance of Bacillus stearothermophilus and Bacillus subtilis spores. Penna TC; Marques M; Machoshvili IA; Ishii M Appl Biochem Biotechnol; 2002; 98-100():539-51. PubMed ID: 12018280 [TBL] [Abstract][Full Text] [Related]
23. Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores. Barraza-Salas M; Ibarra-Rodríguez JR; Mellado SJ; Salas-Pacheco JM; Setlow P; Pedraza-Reyes M FEMS Microbiol Lett; 2010 Jan; 302(2):159-65. PubMed ID: 19930460 [TBL] [Abstract][Full Text] [Related]
24. Resistance of Bacillus subtilis spores to inactivation by gamma irradiation and heating in the presence of a bactericide. 3. Factors affecting rates of inactivation by phenylmercuric nitrate. Deasy PB; Küster E; Timoney RF Appl Microbiol; 1971 Oct; 22(4):567-70. PubMed ID: 5002139 [TBL] [Abstract][Full Text] [Related]
25. Effect of combined heat and radiation on microbial destruction. Fisher DA; Pflug IJ Appl Environ Microbiol; 1977 May; 33(5):1170-6. PubMed ID: 406843 [TBL] [Abstract][Full Text] [Related]
26. Heat and UV light resistance of vegetative cells and spores of Bacillus subtilis Rec-mutants. Hanlin JH; Lombardi SJ; Slepecky RA J Bacteriol; 1985 Aug; 163(2):774-7. PubMed ID: 3926753 [TBL] [Abstract][Full Text] [Related]
27. Thermal activation and dry-heat inactivation of spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger. Gurney TR; Quesnel LB J Appl Bacteriol; 1980 Apr; 48(2):231-47. PubMed ID: 6780504 [No Abstract] [Full Text] [Related]
28. Heat resistance of native and demineralized spores of Bacillus subtilis sporulated at different temperatures. Palop A; Sala FJ; Condón S Appl Environ Microbiol; 1999 Mar; 65(3):1316-9. PubMed ID: 10049900 [TBL] [Abstract][Full Text] [Related]
29. Inactivation by Pulsed Light of Bacillus subtilis Spores with Impaired Protection Factors. Esbelin J; Malléa S; Clair G; Carlin F Photochem Photobiol; 2016 Mar; 92(2):301-307. PubMed ID: 26790838 [TBL] [Abstract][Full Text] [Related]
30. Modelling the combined effects of pH, temperature and sodium chloride stresses on the thermal inactivation of Bacillus subtilis spores in a buffer system. Jagannath A; Nakamura I; Tsuchido T J Appl Microbiol; 2003; 95(1):135-41. PubMed ID: 12807463 [TBL] [Abstract][Full Text] [Related]
31. Inactivation of dried spores of Bacillus subtilis 168 by a treatment combining high temperature and pressure. Hauck-Tiburski J; Rosenthal A; Iaconnelli C; Perrier-Cornet JM; Gervais P Int J Food Microbiol; 2019 Apr; 295():1-7. PubMed ID: 30772603 [TBL] [Abstract][Full Text] [Related]
32. Inactivation of Bacillus subtilis spores by heating at 100 degrees with phenylmercuric nitrate or acetate. O'Connell MP; Deasy PS; Timoney RF J Pharm Pharmacol; 1976 Dec; 28(12):941. PubMed ID: 12280 [No Abstract] [Full Text] [Related]
33. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Setlow B; Setlow P Appl Environ Microbiol; 1995 Jul; 61(7):2787-90. PubMed ID: 7618893 [TBL] [Abstract][Full Text] [Related]
34. Influence of spore moisture content on the dry-heat resistance of Bacillus subtilis var. niger. Angelotti R; Maryanski JH; Butler TF; Peeler JT; Campbell JE Appl Microbiol; 1968 May; 16(5):735-45. PubMed ID: 4968962 [TBL] [Abstract][Full Text] [Related]
35. Alumina--attached spores of Bacillus stearothermophilus for the control of sterilization process. Niepokojczycka E; Zakrzewski K Acta Microbiol Pol B; 1972; 4(3):141-53. PubMed ID: 4630308 [No Abstract] [Full Text] [Related]
36. Enhanced inactivation of Bacillus subtilis spores during solar photolysis of free available chlorine. Forsyth JE; Zhou P; Mao Q; Asato SS; Meschke JS; Dodd MC Environ Sci Technol; 2013 Nov; 47(22):12976-84. PubMed ID: 24191705 [TBL] [Abstract][Full Text] [Related]
37. Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells. Smelt JP; Bos AP; Kort R; Brul S Int J Food Microbiol; 2008 Nov; 128(1):34-40. PubMed ID: 18926580 [TBL] [Abstract][Full Text] [Related]
38. Dry-heat destruction of Bacillus subtilis spores on surfaces: effect of humidity in an open system. Drummond DW; Pflug IJ Appl Microbiol; 1970 Nov; 20(5):805-9. PubMed ID: 4991926 [TBL] [Abstract][Full Text] [Related]
39. Determination of lethality rate constants and D-values for Bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115 degrees C to 170 degrees C. Kempf MJ; Schubert WW; Beaudet RA Astrobiology; 2008 Dec; 8(6):1169-82. PubMed ID: 19191542 [TBL] [Abstract][Full Text] [Related]
40. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Kort R; O'Brien AC; van Stokkum IH; Oomes SJ; Crielaard W; Hellingwerf KJ; Brul S Appl Environ Microbiol; 2005 Jul; 71(7):3556-64. PubMed ID: 16000762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]