BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8135798)

  • 1. Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-1-kinase.
    Zheng RL; Kemp RG
    Biochem Biophys Res Commun; 1994 Mar; 199(2):577-81. PubMed ID: 8135798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The active site of pyrophosphate-dependent phosphofructo-1-kinase based on site-directed mutagenesis and molecular modeling.
    Hinds RM; Xu J; Walters DE; Kemp RG
    Arch Biochem Biophys; 1998 Jan; 349(1):47-52. PubMed ID: 9439581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphofructo-1-kinase: role of charge neutralization in the active site.
    Zheng RL; Kemp RG
    Biochem Biophys Res Commun; 1995 Sep; 214(3):765-70. PubMed ID: 7575542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the active site of Escherichia coli phosphofructokinase.
    Hellinga HW; Evans PR
    Nature; 1987 Jun 4-10; 327(6121):437-9. PubMed ID: 2953977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypercooperativity induced by interface mutations in the phosphofructokinase from Escherichia coli.
    Auzat I; Le Bras G; Garel JR
    J Mol Biol; 1995 Feb; 246(2):248-53. PubMed ID: 7869376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary reengineering of the phosphofructokinase active site: ARG-104 does not stabilize the transition state in 6-phosphofructo-2-kinase.
    Kurland I; Chapman B; Lee YH; Pilkis S
    Biochem Biophys Res Commun; 1995 Aug; 213(2):663-72. PubMed ID: 7646523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential methionine residue involved in substrate binding by phosphofructokinases.
    Wang X; Deng Z; Kemp RG
    Biochem Biophys Res Commun; 1998 Sep; 250(2):466-8. PubMed ID: 9753654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily.
    Pettigrew DW; Smith GB; Thomas KP; Dodds DC
    Arch Biochem Biophys; 1998 Jan; 349(2):236-45. PubMed ID: 9448710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of the fructose 6-phosphate binding site of the pyrophosphate-dependent phosphofructokinase of Entamoeba histolytica.
    Deng Z; Wang X; Kemp RG
    Arch Biochem Biophys; 2000 Aug; 380(1):56-62. PubMed ID: 10900132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli.
    Cabrera R; Babul J; Guixé V
    Arch Biochem Biophys; 2010 Oct; 502(1):23-30. PubMed ID: 20599671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase.
    Kirksey TJ; Appling DR
    Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of residues of Escherichia coli phosphofructokinase that contribute to nucleotide binding and specificity.
    Wang X; Kemp RG
    Biochemistry; 1999 Apr; 38(14):4313-8. PubMed ID: 10194349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis.
    Ibdah M; Bar-Ilan A; Livnah O; Schloss JV; Barak Z; Chipman DM
    Biochemistry; 1996 Dec; 35(50):16282-91. PubMed ID: 8973202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase.
    Drueckes P; Boeck B; Palm D; Schinzel R
    Biochemistry; 1996 May; 35(21):6727-34. PubMed ID: 8639623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis of charged residues in a conserved sequence in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
    Bertrand L; Vertommen D; Feytmans E; Di Pietro A; Rider MH; Hue L
    Biochem J; 1997 Feb; 321 ( Pt 3)(Pt 3):609-14. PubMed ID: 9032444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues.
    Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ
    Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.