These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Effects of kainic acid lesions of the striatum on self-stimulation in the substantia nigra and ventral tegmental area. Phillips AG; LePiane FG; Fibiger HC Behav Brain Res; 1982 Jul; 5(3):297-310. PubMed ID: 6889435 [TBL] [Abstract][Full Text] [Related]
9. Dopamine receptor sub-types involvement in nucleus accumbens and ventral tegmentum but not in medial prefrontal cortex: on self-stimulation of lateral hypothalamus and ventral mesencephalon. Singh J; Desiraju T; Raju TR Behav Brain Res; 1997 Jul; 86(2):171-9. PubMed ID: 9134152 [TBL] [Abstract][Full Text] [Related]
10. Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Yeomans J; Baptista M Pharmacol Biochem Behav; 1997 Aug; 57(4):915-21. PubMed ID: 9259024 [TBL] [Abstract][Full Text] [Related]
11. Hippocampal signal transmission to the pedunculopontine nucleus and its regulation by dopamine D2 receptors in the nucleus accumbens: an electrophysiological and behavioural study. Yang CR; Mogenson GJ Neuroscience; 1987 Dec; 23(3):1041-55. PubMed ID: 2963972 [TBL] [Abstract][Full Text] [Related]
12. Brain reward circuitry: four circuit elements "wired" in apparent series. Wise RA; Bozarth MA Brain Res Bull; 1984 Feb; 12(2):203-8. PubMed ID: 6609751 [TBL] [Abstract][Full Text] [Related]
13. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Clarke PB; Hommer DW; Pert A; Skirboll LR Neuroscience; 1987 Dec; 23(3):1011-9. PubMed ID: 3437988 [TBL] [Abstract][Full Text] [Related]
14. Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic self-stimulation. You ZB; Chen YQ; Wise RA Neuroscience; 2001; 107(4):629-39. PubMed ID: 11720786 [TBL] [Abstract][Full Text] [Related]
15. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Fiorino DF; Coury A; Fibiger HC; Phillips AG Behav Brain Res; 1993 Jun; 55(2):131-41. PubMed ID: 7689319 [TBL] [Abstract][Full Text] [Related]
16. Muscarinic receptor blockade in the ventral tegmental area attenuates cocaine enhancement of laterodorsal tegmentum stimulation-evoked accumbens dopamine efflux in the mouse. Lester DB; Miller AD; Blaha CD Synapse; 2010 Mar; 64(3):216-23. PubMed ID: 19862686 [TBL] [Abstract][Full Text] [Related]
17. Correlation between the discharge rate of non-dopamine neurons in substantia nigra and ventral tegmental area and the motor activity induced by apomorphine. Olds ME Neuroscience; 1988 Feb; 24(2):465-76. PubMed ID: 3362349 [TBL] [Abstract][Full Text] [Related]
18. Enhanced dopamine metabolism in accumbens leads to motor activity and concurrently to increased output from nondopamine neurons in ventral tegmental area and substantia nigra. Olds ME Physiol Behav; 1992 Jan; 51(1):39-50. PubMed ID: 1311110 [TBL] [Abstract][Full Text] [Related]
19. Evidence implicating both slow- and fast-conducting fibers in the rewarding effect of medial forebrain bundle stimulation. Murray B; Shizgal P Behav Brain Res; 1994 Jul; 63(1):47-60. PubMed ID: 7945977 [TBL] [Abstract][Full Text] [Related]
20. Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Miller AD; Forster GL; Yeomans JS; Blaha CD Neuroscience; 2005; 136(2):531-8. PubMed ID: 16216430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]