BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8136080)

  • 1. Plant low-molecular-mass heat-shock proteins: their relationship to the acquisition of thermotolerance in plants.
    Yeh KW; Jinn TL; Yeh CH; Chen YM; Lin CY
    Biotechnol Appl Biochem; 1994 Feb; 19(1):41-9. PubMed ID: 8136080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein.
    Whitham SA; Anderberg RJ; Chisholm ST; Carrington JC
    Plant Cell; 2000 Apr; 12(4):569-82. PubMed ID: 10760245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro.
    Yeh CH; Yeh KW; Wu SH; Chang PF; Chen YM; Lin CY
    Plant Cell Physiol; 1995 Oct; 36(7):1341-8. PubMed ID: 8564303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.
    Xue GP; Drenth J; McIntyre CL
    J Exp Bot; 2015 Feb; 66(3):1025-39. PubMed ID: 25428996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance.
    Yeh CH; Chang PF; Yeh KW; Lin WC; Chen YM; Lin CY
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10967-72. PubMed ID: 9380743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of Oryza sativa 16.9 kDa heat shock protein.
    Young LS; Yeh CH; Chen YM; Lin CY
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):31-8. PubMed ID: 10548530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L.) heynh.
    Visioli G; Maestri E; Marmiroli N
    Plant Mol Biol; 1997 Jun; 34(3):517-27. PubMed ID: 9225862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulatory mechanisms of the heat-shock response in plants].
    Takahashi T; Komeda Y
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2173-8. PubMed ID: 10586653
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis of transcriptional response to heat stress in Rhazya stricta.
    Obaid AY; Sabir JS; Atef A; Liu X; Edris S; El-Domyati FM; Mutwakil MZ; Gadalla NO; Hajrah NH; Al-Kordy MA; Hall N; Bahieldin A; Jansen RK
    BMC Plant Biol; 2016 Nov; 16(1):252. PubMed ID: 27842501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.).
    Rana RM; Dong S; Tang H; Ahmad F; Zhang H
    J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of HSP-28 and three HSP-70 genes during the development and decay of thermotolerance in leukemic and nonleukemic human tumors.
    Mivechi NF; Monson JM; Hahn GM
    Cancer Res; 1991 Dec; 51(24):6608-14. PubMed ID: 1742734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.
    Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT
    Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock of cultivated and wild wheats during early seedling stage: growth, cell viability and heat shock proteins.
    Yildizi M; Terzioglu S
    Acta Biol Hung; 2006 Jun; 57(2):231-46. PubMed ID: 16841474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.
    Wang X; Huang W; Liu J; Yang Z; Huang B
    Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation.
    Charng YY; Liu HC; Liu NY; Hsu FC; Ko SS
    Plant Physiol; 2006 Apr; 140(4):1297-305. PubMed ID: 16500991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves.
    Lenne C; Block MA; Garin J; Douce R
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):805-13. PubMed ID: 7487935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana.
    Liu HT; Gao F; Li GL; Han JL; Liu DL; Sun DY; Zhou RG
    Plant J; 2008 Sep; 55(5):760-73. PubMed ID: 18466301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S; Röth S; Schleiff E; Scharf KD
    Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermotolerance and the heat shock proteins.
    Burdon RH
    Symp Soc Exp Biol; 1987; 41():269-83. PubMed ID: 3332487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.