BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8136356)

  • 1. Caldesmon, N-terminal yeast actin mutants, and the regulation of actomyosin interactions.
    Crosbie RH; Miller C; Chalovich JM; Rubenstein PA; Reisler E
    Biochemistry; 1994 Mar; 33(11):3210-6. PubMed ID: 8136356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the role of the N terminus of actin in actomyosin interactions. Comparison with other mutant actins and implications for the cross-bridge cycle.
    Miller CJ; Wong WW; Bobkova E; Rubenstein PA; Reisler E
    Biochemistry; 1996 Dec; 35(51):16557-65. PubMed ID: 8987990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural study of gizzard caldesmon and its interaction with actin. Binding involves residues of actin also recognised by myosin subfragment 1.
    Levine BA; Moir AJ; Audemard E; Mornet D; Patchell VB; Perry SV
    Eur J Biochem; 1990 Nov; 193(3):687-96. PubMed ID: 2147415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the effects of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon.
    Winder SJ; Sutherland C; Walsh MP
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):733-9. PubMed ID: 1471986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin filament velocity.
    Wang Z; Jiang H; Yang ZQ; Chacko S
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11899-904. PubMed ID: 9342334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo.
    Cook RK; Blake WT; Rubenstein PA
    J Biol Chem; 1992 May; 267(13):9430-6. PubMed ID: 1349604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonspecific weak actomyosin interactions: relocation of charged residues in subdomain 1 of actin does not alter actomyosin function.
    Wong WW; Doyle TC; Reisler E
    Biochemistry; 1999 Jan; 38(4):1365-70. PubMed ID: 9930999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon.
    Marston SB; Redwood CS
    J Biol Chem; 1992 Aug; 267(24):16796-800. PubMed ID: 1387396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus.
    Cook RK; Root D; Miller C; Reisler E; Rubenstein PA
    J Biol Chem; 1993 Feb; 268(4):2410-5. PubMed ID: 8428914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caldesmon-induced polymerization of actin from profilactin.
    GaƂazkiewicz B; Buss F; Jockusch BM; Dabrowska R
    Eur J Biochem; 1991 Jan; 195(2):543-7. PubMed ID: 1997329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of the polymerization of actin from the actin:thymosin beta 4 complex by phalloidin, skeletal myosin subfragment 1, chicken intestinal myosin I and free ends of filamentous actin.
    Ballweber E; Hannappel E; Niggemeyer B; Mannherz HG
    Eur J Biochem; 1994 Jul; 223(2):419-26. PubMed ID: 8055911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of smooth muscle actomyosin ATPase by caldesmon is associated with caldesmon-induced conformational changes in tropomyosin bound to actin.
    Horiuchi KY; Wang Z; Chacko S
    Biochemistry; 1995 Dec; 34(51):16815-20. PubMed ID: 8527457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibitory complex of smooth muscle caldesmon with actin and tropomyosin involves three interacting segments of the C-terminal domain 4.
    Fraser ID; Copeland O; Bing W; Marston SB
    Biochemistry; 1997 May; 36(18):5483-92. PubMed ID: 9154931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural relationship between the calmodulin-binding, actin-binding, and actomyosin-ATPase inhibitory domains on the C terminus of smooth muscle caldesmon.
    Wang Z; Yang ZQ; Chacko S
    J Biol Chem; 1997 Jul; 272(27):16896-903. PubMed ID: 9201998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis analysis of functionally important domains within the C-terminal end of smooth muscle caldesmon.
    Wang Z; Chacko S
    J Biol Chem; 1996 Oct; 271(41):25707-14. PubMed ID: 8810349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle.
    Hansen JE; Marner J; Pavlov D; Rubenstein PA; Reisler E
    Biochemistry; 2000 Feb; 39(7):1792-9. PubMed ID: 10677229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caldesmon freezes the structure of actin filaments during the actomyosin ATPase cycle.
    Borovikov YS; Kulikova N; Pronina OE; Khaimina SS; Wrzosek A; Dabrowska R
    Biochim Biophys Acta; 2006 Jun; 1764(6):1054-62. PubMed ID: 16713410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location of the calmodulin- and actin-binding domains at the C-terminus of caldesmon.
    Makuch R; Walsh MP; Dabrowska R
    FEBS Lett; 1989 Apr; 247(2):411-4. PubMed ID: 2523821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunochemical evidence for the binding of caldesmon to the NH2-terminal segment of actin.
    Adams S; DasGupta G; Chalovich JM; Reisler E
    J Biol Chem; 1990 Nov; 265(32):19652-7. PubMed ID: 2246250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actomyosin cross-linking by caldesmon in non-muscle cells.
    Goncharova EA; Shirinsky VP; Shevelev AY; Marston SB; Vorotnikov AV
    FEBS Lett; 2001 May; 497(2-3):113-7. PubMed ID: 11377424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.