BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8136356)

  • 21. Mutational analysis of the role of hydrophobic residues in the 338-348 helix on actin in actomyosin interactions.
    Miller CJ; Doyle TC; Bobkova E; Botstein D; Reisler E
    Biochemistry; 1996 Mar; 35(12):3670-6. PubMed ID: 8619986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding domain of caldesmon.
    Horiuchi KY; Samuel M; Chacko S
    Biochemistry; 1991 Jan; 30(3):712-7. PubMed ID: 1824822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Caldesmon-actin-tropomyosin contains two types of binding sites for myosin S1.
    Sen A; Chalovich JM
    Biochemistry; 1998 May; 37(20):7526-31. PubMed ID: 9585567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanism of inhibition of the actin-activated myosin MgATPase by calponin.
    Miki M; Walsh MP; Hartshorne DJ
    Biochem Biophys Res Commun; 1992 Sep; 187(2):867-71. PubMed ID: 1388358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibody and peptide probes of interactions between the SH1-SH2 region of myosin subfragment 1 and actin's N-terminus.
    Cartoux L; Chen T; DasGupta G; Chase PB; Kushmerick MJ; Reisler E
    Biochemistry; 1992 Nov; 31(44):10929-35. PubMed ID: 1420204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific mutations in the myosin binding sites of actin affect structural transitions that control myosin binding.
    Prochniewicz E; Thomas DD
    Biochemistry; 2001 Nov; 40(46):13933-40. PubMed ID: 11705383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-activity studies of the regulatory interaction of the 10 kilodalton C-terminal fragment of caldesmon with actin and the effect of mutation of caldesmon residues 691-696.
    Huber PA; Gao Y; Fraser ID; Copeland O; EL-Mezgueldi M; Slatter DA; Keane NE; Marston SB; Levine BA
    Biochemistry; 1998 Feb; 37(8):2314-26. PubMed ID: 9485378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of C-terminal amino acid residues of actin to the inhibition of actomyosin ATPase activity by caldesmon and troponin I.
    Makuch R; Kołakowski J; Dabrowska R
    FEBS Lett; 1992 Feb; 297(3):237-40. PubMed ID: 1531959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of smooth muscle actomyosin ATPase by thin filament associated proteins.
    Horiuchi KY; Miyata H; Chacko S
    Biochem Biophys Res Commun; 1986 May; 136(3):962-8. PubMed ID: 2941015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of caldesmon on the ATPase activities of rabbit skeletal-muscle myosin.
    Lim MS; Walsh MP
    Biochem J; 1986 Sep; 238(2):523-30. PubMed ID: 2948498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caldesmon binding to actin is regulated by calmodulin and phosphorylation via different mechanisms.
    Huang R; Li L; Guo H; Wang CL
    Biochemistry; 2003 Mar; 42(9):2513-23. PubMed ID: 12614145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation.
    Foster DB; Huang R; Hatch V; Craig R; Graceffa P; Lehman W; Wang CL
    J Biol Chem; 2004 Dec; 279(51):53387-94. PubMed ID: 15456752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of actin stimulation of skeletal muscle (A1)S-1 ATPase activity by caldesmon.
    Hemric ME; Freedman MV; Chalovich JM
    Arch Biochem Biophys; 1993 Oct; 306(1):39-43. PubMed ID: 8215419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization and characterization of a 7.3-kDa region of caldesmon which reversibly inhibits actomyosin ATPase activity.
    Chalovich JM; Bryan J; Benson CE; Velaz L
    J Biol Chem; 1992 Aug; 267(23):16644-50. PubMed ID: 1386604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE; Copeland O; Marston S; Borovikov IuS
    Tsitologiia; 2006; 48(1):9-18. PubMed ID: 16568830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Actin's view of actomyosin interface.
    Miller CJ; Cheung P; White P; Reisler E
    Biophys J; 1995 Apr; 68(4 Suppl):50S-54S. PubMed ID: 7787100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of charged amino acid pairs in subdomain-1 of actin in interactions with myosin.
    Miller CJ; Reisler E
    Biochemistry; 1995 Feb; 34(8):2694-700. PubMed ID: 7873552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of caldesmon on actin-myosin interaction in skeletal muscle fibers.
    Gałazkiewicz B; Borovikov YS; Dabrowska R
    Biochim Biophys Acta; 1987 Dec; 916(3):368-75. PubMed ID: 3689797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caldesmon inhibits the cooperative turning-on of the smooth muscle heavy meromyosin by tropomyosin-actin.
    Horiuchi KY; Chacko S
    Biochemistry; 1989 Nov; 28(23):9111-6. PubMed ID: 2532547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of ionic strength, actin state, and caldesmon construct size on the number of actin monomers in a caldesmon binding site.
    Fredricksen S; Cai A; Gafurov B; Resetar A; Chalovich JM
    Biochemistry; 2003 May; 42(20):6136-48. PubMed ID: 12755616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.