BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8137170)

  • 1. Elevation of the neurotoxin quinolinic acid occurs following spinal cord trauma.
    Popovich PG; Reinhard JF; Flanagan EM; Stokes BT
    Brain Res; 1994 Jan; 633(1-2):348-52. PubMed ID: 8137170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury.
    Blight AR; Saito K; Heyes MP
    Brain Res; 1993 Dec; 632(1-2):314-6. PubMed ID: 8149236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinolinic acid accumulation in injured spinal cord: time course, distribution, and species differences between rat and guinea pig.
    Blight AR; Leroy EC; Heyes MP
    J Neurotrauma; 1997 Feb; 14(2):89-98. PubMed ID: 9069440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-chloro-3-hydroxyanthranilate reduces local quinolinic acid synthesis, improves functional recovery, and preserves white matter after spinal cord injury.
    Yates JR; Heyes MP; Blight AR
    J Neurotrauma; 2006 Jun; 23(6):866-81. PubMed ID: 16774472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinolinic acid accumulation and functional deficits following experimental spinal cord injury.
    Blight AR; Cohen TI; Saito K; Heyes MP
    Brain; 1995 Jun; 118 ( Pt 3)():735-52. PubMed ID: 7600090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis.
    Flanagan EM; Erickson JB; Viveros OH; Chang SY; Reinhard JF
    J Neurochem; 1995 Mar; 64(3):1192-6. PubMed ID: 7861150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different expression of macrophages and microglia in rat spinal cord contusion injury model at morphological and regional levels.
    Wu D; Miyamoto O; Shibuya S; Okada M; Igawa H; Janjua NA; Norimatsu H; Itano T
    Acta Med Okayama; 2005 Aug; 59(4):121-7. PubMed ID: 16155637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered tryptophan metabolism in mice with herpes simplex virus encephalitis: increases in spinal cord quinolinic acid.
    Reinhard JF
    Neurochem Res; 1998 May; 23(5):661-5. PubMed ID: 9566604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of memantine, an N-methyl-D-aspartate receptor antagonist, on fatigue and neuronal brain damage in a rat model of combined (physical and mental) fatigue.
    Morimoto Y; Zhang Q; Adachi K
    Biol Pharm Bull; 2012; 35(4):481-6. PubMed ID: 22466550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate.
    Heyes MP; Saito K; Major EO; Milstien S; Markey SP; Vickers JH
    Brain; 1993 Dec; 116 ( Pt 6)():1425-50. PubMed ID: 8293279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential action of NMDA antagonists on cholinergic neurotoxicity produced by N-methyl-D-aspartate and quinolinic acid.
    Pawley AC; Flesher S; Boegman RJ; Beninger RJ; Jhamandas KH
    Br J Pharmacol; 1996 Mar; 117(6):1059-64. PubMed ID: 8882597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain quinolinic acid in chronic experimental hepatic encephalopathy: effects of an exogenous ammonium acetate challenge.
    Bergqvist PB; Heyes MP; Bugge M; Bengtsson F
    J Neurochem; 1995 Nov; 65(5):2235-40. PubMed ID: 7595512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease.
    Heyes MP; Saito K; Crowley JS; Davis LE; Demitrack MA; Der M; Dilling LA; Elia J; Kruesi MJ; Lackner A
    Brain; 1992 Oct; 115 ( Pt 5)():1249-73. PubMed ID: 1422788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kynurenine pathway and neurologic disease. Therapeutic strategies.
    Heyes MP
    Adv Exp Med Biol; 1996; 398():125-9. PubMed ID: 8906254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of amino acid levels and aspartate distribution in the cervical spinal cord after traumatic spinal cord injury.
    Watanabe M; Fujimura Y; Nakamura M; Yato Y; Ohta K; Okai H; Ogawa Y
    J Neurotrauma; 1998 Apr; 15(4):285-93. PubMed ID: 9555974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation.
    Geng SJ; Liao FF; Dang WH; Ding X; Liu XD; Cai J; Han JS; Wan Y; Xing GG
    Exp Neurol; 2010 Apr; 222(2):256-66. PubMed ID: 20079352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of N-methyl-D-aspartate receptor in acute spinal cord injury.
    Yanase M; Sakou T; Fukuda T
    J Neurosurg; 1995 Nov; 83(5):884-8. PubMed ID: 7472559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinolinic acid accumulation during neuroinflammation. Does it imply excitotoxicity?
    Obrenovitch TP
    Ann N Y Acad Sci; 2001 Jun; 939():1-10. PubMed ID: 11462760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of methylprednisolone and 4-chloro-3-hydroxyanthranilic acid in experimental spinal cord injury in the guinea pig appear to be mediated by different and potentially complementary mechanisms.
    Yates JR; Gay EA; Heyes MP; Blight AR
    Spinal Cord; 2014 Sep; 52(9):662-6. PubMed ID: 25047053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.