These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8137785)

  • 1. Electrophoretic light scattering.
    Takagi T
    Electrophoresis; 1993 Dec; 14(12):1255-6. PubMed ID: 8137785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New device for determination of cell electrophoretic mobility using doppler velocimetry.
    Malher E; Martin D; Duvivier C; Volochine B; Stoltz JF
    Biorheology; 1982; 19(5):647-54. PubMed ID: 7150717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a high-performance electrophoretic light scattering apparatus for mobility determination of particles with their Stokes' radii of several nanometers.
    Oka K; Otani W; Kameyama K; Kidai M; Takagi T
    Appl Theor Electrophor; 1990; 1(5):273-8. PubMed ID: 2099184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium analysis of reactions between aromatic anions and nonionic surfactant micelles by capillary zone electrophoresis.
    Takayanagi T; Motomizu S
    J Chromatogr A; 1999 Aug; 853(1-2):55-61. PubMed ID: 10486712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of neutral surfactants for the capillary electrophoretic separation of hydrophobically modified poly(acrylic acids).
    Collet J; Tribet C; Gareil P
    Electrophoresis; 1996 Jul; 17(7):1202-9. PubMed ID: 8855405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of calcium2+ and magnesium2+ on the electrophoretic mobility of chromaffin granules measured by electrophoretic light scattering.
    Siegel DP; Ware BR; Green DJ; Westhead EW
    Biophys J; 1978 May; 22(2):341-6. PubMed ID: 656547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-angle neutron scattering study of the micellization of photosensitive surfactants in solution and in the presence of a hydrophobically modified polyelectrolyte.
    Lee CT; Smith KA; Hatton TA
    Langmuir; 2009 Dec; 25(24):13784-94. PubMed ID: 19715336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the melting of kinetically frozen poly(butyl acrylate-b-acrylic acid) micelles via addition of surfactant.
    Jacquin M; Muller P; Cottet H; Crooks R; Théodoly O
    Langmuir; 2007 Sep; 23(20):9939-48. PubMed ID: 17718579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of critical micelle concentration of surfactants by capillary electrophoresis.
    Lin CE
    J Chromatogr A; 2004 May; 1037(1-2):467-78. PubMed ID: 15214683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-association extraction of nitrophenolate ions with tetrabutylammonium ion into nonionic surfactant micelle.
    Takayanagi T; Motomizu S
    J Chromatogr A; 2006 Nov; 1133(1-2):353-60. PubMed ID: 16938302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size control of styrene oxide-ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study.
    Castro E; Taboada P; Barbosa S; Mosquera V
    Biomacromolecules; 2005; 6(3):1438-47. PubMed ID: 15877363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoretic behavior of milk proteins in the presence of non-ionic surfactants.
    Xu RJ; Vidal-Madjar C; Sébille B
    J Chromatogr B Biomed Sci Appl; 1998 Feb; 706(1):3-11. PubMed ID: 9544802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micelle-vesicle transition of oleyldimethylamine oxide in water.
    Miyahara M; Kawasaki H; Garamus VM; Nemoto N; Kakehashi R; Tanaka S; Annaka M; Maeda H
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):131-8. PubMed ID: 15542314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic mobilities of RNA tumor viruses. Studies by Doppler-shifted light scattering spectroscopy.
    Rimai L; Salmeen I; Hart D; Liebes L; Rich MA; McCormick JJ
    Biochemistry; 1975 Oct; 14(21):4621-7. PubMed ID: 170961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the critical premicelle concentration, first critical micelle concentration and second critical micelle concentration of surfactants by resonance Rayleigh scattering method without any probe.
    Shi Y; Luo HQ; Li NB
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1403-7. PubMed ID: 21330189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization of octane in electrostatically-formed surfactant-polymer complexes.
    Zhang H; Zeeb B; Salminen H; Feng F; Weiss J
    J Colloid Interface Sci; 2014 Mar; 417():9-17. PubMed ID: 24407654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electrophoretic light scattering of biomolecular assemblies].
    Sano Y
    Tanpakushitsu Kakusan Koso; 1994 Sep; 39(12):2121-9. PubMed ID: 7938609
    [No Abstract]   [Full Text] [Related]  

  • 18. Solution and adsorption behaviour of lecithin surfactants in CFC suspensions: a light scattering study in aerosol propellants.
    Malik S; Washington C; Purewal TS
    Int J Pharm; 1999 Sep; 186(1):63-9. PubMed ID: 10469924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic mobility distributions of normal human T and B lymphocytes and of peripheral blood lymphoblasts in acute lymphocytic leukemia: effects of neuraminidase and of solvent ionic strength.
    Smith BA; Ware BR; Yankee RA
    J Immunol; 1978 Mar; 120(3):921-6. PubMed ID: 305450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenging the surfactant monomer skin penetration model: penetration of sodium dodecyl sulfate micelles into the epidermis.
    Moore PN; Puvvada S; Blankschtein D
    J Cosmet Sci; 2003; 54(1):29-46. PubMed ID: 12644857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.