These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8137789)

  • 1. On the use of dimensionless parameters in acid-base theory. V. Buffers composed of binary mixtures of monovalent weak acids and bases.
    Rilbe H
    Electrophoresis; 1993 Dec; 14(12):1271-7. PubMed ID: 8137789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of dimensionless parameters in acid-base theory: VI. The buffer capacities of equimolar binary mixtures of monovalent weak protolytes as compared to that of bivalent protolytes.
    Rilbe H
    Electrophoresis; 1994 May; 15(5):580-3. PubMed ID: 7925234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of dimensionless parameters in acid-base theory. III. The molar buffer capacity of trivalent protolytes.
    Rilbe H
    Electrophoresis; 1993 Jul; 14(7):591-6. PubMed ID: 8375349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling buffer capacity and pH in acid and acidified foods.
    Price RE; Longtin M; Conley-Payton S; Osborne JA; Johanningsmeier SD; Bitzer D; Breidt F
    J Food Sci; 2020 Apr; 85(4):918-925. PubMed ID: 32199038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of dimensionless parameters in acid-base theory. II. The molar buffer capacities of bivalent weak acids and bases.
    Rilbe H
    Electrophoresis; 1993 Mar; 14(3):202-4. PubMed ID: 8486131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the use of dimensionless parameters in acid-base theory. VII. The pH of solutions of salts of a strong acid and a weak base or vice versa.
    Rilbe H
    Electrophoresis; 1994 Jul; 15(7):932-5. PubMed ID: 7813398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total weak acid concentration and effective dissociation constant of nonvolatile buffers in human plasma.
    Constable PD
    J Appl Physiol (1985); 2001 Sep; 91(3):1364-71. PubMed ID: 11509537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.
    Mioni R; Mioni G
    Scand J Clin Lab Invest; 2015 Oct; 75(6):452-69. PubMed ID: 26059505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidic dissociation constants of folic acid, dihydrofolic acid, and methotrexate.
    Poe M
    J Biol Chem; 1977 Jun; 252(11):3724-8. PubMed ID: 16913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE SIGNIFICANCE OF THE HYDROGEN ION CONCENTRATION FOR THE DIGESTION OF PROTEINS BY PEPSIN.
    Northrop JH
    J Gen Physiol; 1920 Nov; 3(2):211-27. PubMed ID: 19871859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-mechanistic partial buffer approach to modeling pH, the buffer properties, and the distribution of ionic species in complex solutions.
    Dougherty DP; Da Conceicao Neta ER; McFeeters RF; Lubkin SR; Breidt F
    J Agric Food Chem; 2006 Aug; 54(16):6021-9. PubMed ID: 16881711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature on the chromatographic retention of ionizable compounds. III. Modeling retention of pharmaceuticals as a function of eluent pH and column temperature in RPLC.
    Gagliardi LG; Castells CB; Ràfols C; Rosés M; Bosch E
    J Sep Sci; 2008 Apr; 31(6-7):969-80. PubMed ID: 18381700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical properties of amphoteric, isoelectric, macroreticulate buffers.
    Chiari M; Pagani L; Righetti PG
    J Biochem Biophys Methods; 1991 Sep; 23(2):115-30. PubMed ID: 1940006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.
    Chuy S; Bell LN
    J Food Sci; 2009; 74(1):C56-61. PubMed ID: 19200086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D(-)-N-Methylglucamine buffer for pH 8.5 to 10.5.
    Chromy V; Kulhánek V; Fischer J
    Clin Chem; 1978 Feb; 24(2):379-81. PubMed ID: 23911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical basis for the detection of general-base catalysis in the presence of predominating hydroxide catalysis.
    Kirsch LE; Notari RE
    J Pharm Sci; 1984 Jun; 73(6):724-7. PubMed ID: 6737254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of ribozyme cleavage kinetics to measure salt-induced changes in solution pH.
    Smith MD; Collins RA
    Anal Biochem; 2011 Aug; 415(1):12-20. PubMed ID: 21545785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the buffer capacity of ingredients in salad dressing products.
    Longtin M; Price RE; Mishra R; Breidt F
    J Food Sci; 2020 Apr; 85(4):910-917. PubMed ID: 32198767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
    Gómez G; Pikal MJ; Rodríguez-Hornedo N
    Pharm Res; 2001 Jan; 18(1):90-7. PubMed ID: 11336359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pK-matched running buffers for gel electrophoresis.
    Liu Q; Li X; Sommer SS
    Anal Biochem; 1999 May; 270(1):112-22. PubMed ID: 10328772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.