BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8137875)

  • 21. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence.
    Wells JL; Bartlett JL; Ananthan S; Bilsky EJ
    J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of hyperalgesia in streptozotocin-induced diabetic mice by a lipopolysaccharide from Pantoea agglomerans.
    Kamei J; Iwamoto Y; Suzuki T; Misawa M; Kasuya Y; Okutomi T; Soma G; Mizuno D
    Biol Pharm Bull; 1994 May; 17(5):632-4. PubMed ID: 7920422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peripheral antinociceptive effects of the cyclic endomorphin-1 analog c[YpwFG] in a mouse visceral pain model.
    Bedini A; Baiula M; Gentilucci L; Tolomelli A; De Marco R; Spampinato S
    Peptides; 2010 Nov; 31(11):2135-40. PubMed ID: 20713109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Naloxone-induced analgesia in diabetic mice.
    Kamei J; Kawashima N; Kasuya Y
    Eur J Pharmacol; 1992 Jan; 210(3):339-41. PubMed ID: 1319338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats.
    Arreola-Espino R; Urquiza-Marín H; Ambriz-Tututi M; Araiza-Saldaña CI; Caram-Salas NL; Rocha-González HI; Mixcoatl-Zecuatl T; Granados-Soto V
    Eur J Pharmacol; 2007 Dec; 577(1-3):203-10. PubMed ID: 17920585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective antagonism by naloxonazine of antinociception by Tyr-D-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors.
    Sakurada S; Takeda S; Sato T; Hayashi T; Yuki M; Kutsuwa M; Tan-No K; Sakurada C; Kisara K; Sakurada T
    Eur J Pharmacol; 2000 Apr; 395(2):107-12. PubMed ID: 10794815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antinociceptive effect of buprenorphine in mu1-opioid receptor deficient CXBK mice.
    Kamei J; Sodeyama M; Tsuda M; Suzuki T; Nagase H
    Life Sci; 1997; 60(22):PL 333-7. PubMed ID: 9180346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse.
    Tseng LF; Narita M; Suganuma C; Mizoguchi H; Ohsawa M; Nagase H; Kampine JP
    J Pharmacol Exp Ther; 2000 Feb; 292(2):576-83. PubMed ID: 10640294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa.
    Matsumoto K; Hatori Y; Murayama T; Tashima K; Wongseripipatana S; Misawa K; Kitajima M; Takayama H; Horie S
    Eur J Pharmacol; 2006 Nov; 549(1-3):63-70. PubMed ID: 16978601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of mu1-opioid receptor on oxycodone-induced antinociception in diabetic mice.
    Nozaki C; Kamei J
    Eur J Pharmacol; 2007 Apr; 560(2-3):160-2. PubMed ID: 17292346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of opioid receptors in the spinal antinociceptive effects of neuropeptide FF analogues.
    Gouardères C; Jhamandas K; Sutak M; Zajac JM
    Br J Pharmacol; 1996 Feb; 117(3):493-501. PubMed ID: 8821539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antinociceptive activity of methanolic extract of Muntingia calabura leaves: further elucidation of the possible mechanisms.
    Zakaria ZA; Mohd Sani MH; Cheema MS; Kader AA; Kek TL; Salleh MZ
    BMC Complement Altern Med; 2014 Feb; 14():63. PubMed ID: 24555641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Buprenorphine exerts its antinociceptive activity via mu 1-opioid receptors.
    Kamei J; Saitoh A; Suzuki T; Misawa M; Nagase H; Kasuya Y
    Life Sci; 1995 Mar; 56(15):PL285-90. PubMed ID: 8614238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antitussive effect of [Met5]enkephalin-Arg6-Phe7 in mice.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1994 Mar; 253(3):293-6. PubMed ID: 8200424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides.
    Lohmann AB; Welch SP
    Eur J Pharmacol; 1999 Dec; 385(2-3):119-27. PubMed ID: 10607867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse.
    Yajima Y; Narita M; Takahashi-Nakano Y; Misawa M; Nagase H; Mizoguchi H; Tseng LF; Suzuki T
    Brain Res; 2000 Apr; 862(1-2):120-6. PubMed ID: 10799676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of spinal kappa opioid receptors in the antinociception produced by intrathecally administered corticotropin-releasing factor in mice.
    Song ZH; Takemori AE
    J Pharmacol Exp Ther; 1990 Aug; 254(2):363-8. PubMed ID: 2166788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of delta-opioid receptor contributes to the antinociceptive effect of oxycodone in mice.
    Yang PP; Yeh GC; Yeh TK; Xi J; Loh HH; Law PY; Tao PL
    Pharmacol Res; 2016 Sep; 111():867-876. PubMed ID: 27496654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antinociceptive evaluation of 14 beta-(bromoacetamido)-7,8-dihydro- N(cyclopropylmethyl)-normorphinone in mice.
    Jiang Q; Seyed-Mozaffari A; Archer S; Bidlack JM
    Eur J Pharmacol; 1993 Aug; 240(2-3):201-6. PubMed ID: 7694857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.