BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8137875)

  • 61. Role of kappa- and delta-opioid receptors in the antinociceptive effect of oxytocin in formalin-induced pain response in mice.
    Reeta Kh; Mediratta PK; Rathi N; Jain H; Chugh C; Sharma KK
    Regul Pept; 2006 Jul; 135(1-2):85-90. PubMed ID: 16712978
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antinociceptive properties of Micrurus lemniscatus venom.
    Leite dos Santos GG; Casais e Silva LL; Pereira Soares MB; Villarreal CF
    Toxicon; 2012 Nov; 60(6):1005-12. PubMed ID: 22841808
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A.
    Drinovac V; Bach-Rojecky L; Matak I; Lacković Z
    Neuropharmacology; 2013 Jul; 70():331-7. PubMed ID: 23499661
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Antinociceptive activity of intrathecal ketorolac is blocked by the kappa-opioid receptor antagonist, nor-binaltorphimine.
    Uphouse LA; Welch SP; Ward CR; Ellis EF; Embrey JP
    Eur J Pharmacol; 1993 Sep; 242(1):53-8. PubMed ID: 8223936
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynorphinergic mechanism mediating endomorphin-2-induced antianalgesia in the mouse spinal cord.
    Wu HE; Sun HS; Darpolar M; Leitermann RJ; Kampine JP; Tseng LF
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1135-41. PubMed ID: 14557378
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A selective CCKB receptor antagonist potentiates, mu-, but not delta-opioid receptor-mediated antinociception in the formalin test.
    Noble F; Blommaert A; Fournié-Zaluski MC; Roques BP
    Eur J Pharmacol; 1995 Jan; 273(1-2):145-51. PubMed ID: 7737308
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Possible involvement of cholinergic and opioid receptor mechanisms in fluoxetine mediated antinociception response in streptozotocin-induced diabetic mice.
    Anjaneyulu M; Chopra K
    Eur J Pharmacol; 2006 May; 538(1-3):80-4. PubMed ID: 16650402
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pharmacological studies with a nonpeptidic, delta-opioid (-)-(1R,5R,9R)-5,9-dimethyl-2'-hydroxy-2-(6-hydroxyhexyl)-6,7-benzomorphan hydrochloride ((-)-NIH 11082).
    Aceto MD; May EL; Harris LS; Bowman ER; Cook CD
    Eur J Pharmacol; 2007 Jul; 566(1-3):88-93. PubMed ID: 17434480
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice.
    Ward SJ; Takemori AE
    J Pharmacol Exp Ther; 1983 Mar; 224(3):525-30. PubMed ID: 6131119
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antinociception produced by oral, subcutaneous or intrathecal administration of SC-39566, an opioid dipeptide arylalkylamide, in the rodent.
    Hammond DL; Stapelfeld A; Drower EJ; Savage MA; Tam L; Mazur RH
    J Pharmacol Exp Ther; 1994 Feb; 268(2):607-15. PubMed ID: 8113971
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo characterization of the effects of human hemokinin-1 and human hemokinin-1(4-11), mammalian tachykinin peptides, on the modulation of pain in mice.
    Fu CY; Zhao YL; Dong L; Chen Q; Ni JM; Wang R
    Brain Behav Immun; 2008 Aug; 22(6):850-60. PubMed ID: 18262387
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.
    Shamima AR; Fakurazi S; Hidayat MT; Hairuszah I; Moklas MAM; Arulselvan P
    Int J Mol Sci; 2012; 13(9):11427-11442. PubMed ID: 23109863
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Involvement of oxytocin in spinal antinociception in rats with inflammation.
    Yu SQ; Lundeberg T; Yu LC
    Brain Res; 2003 Sep; 983(1-2):13-22. PubMed ID: 12914962
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Opioid receptors and acetaminophen (paracetamol).
    Raffa RB; Walker EA; Sterious SN
    Eur J Pharmacol; 2004 Oct; 503(1-3):209-10. PubMed ID: 15496316
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Formalin-induced nociceptive responses in diabetic mice.
    Kamei J; Hitosugi H; Kasuya Y
    Neurosci Lett; 1993 Jan; 149(2):161-4. PubMed ID: 7682680
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of a mu-opioid receptor agonist on G-protein activation in streptozotocin-induced diabetic mice.
    Ohsawa M; Mizoguchi H; Narita M; Kamei J; Nagase H; Tseng LF
    Eur J Pharmacol; 2000 Jul; 401(1):55-8. PubMed ID: 10915837
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mediation of swim-stress antinociception by the opioid delta 2 receptor in the mouse.
    Vanderah TW; Wild KD; Takemori AE; Sultana M; Portoghese PS; Bowen WD; Mosberg HI; Porreca F
    J Pharmacol Exp Ther; 1992 Jul; 262(1):190-7. PubMed ID: 1320682
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modification of kappa-opioid receptor agonist-induced antinociception by diabetes in the mouse brain and spinal cord.
    Ohsawa M; Kamei J
    J Pharmacol Sci; 2005 May; 98(1):25-32. PubMed ID: 15879680
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Antinociception and delta-1 opioid receptors in the rat spinal cord: studies with intrathecal 7-benzylidenenaltrexone.
    Hammond DL; Stewart PE; Littell L
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1317-24. PubMed ID: 7562504
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antitussive effect of (+/-) pentazocine in diabetic mice is mediated by delta-sites, but not by mu- or kappa-opioid receptors.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1994 Jun; 14(3):147-52. PubMed ID: 7941779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.