BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8138030)

  • 1. Delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Bermúdez Moretti M; Correa García S; Stella C; Ramos E; Batlle AM
    Int J Biochem; 1993 Dec; 25(12):1917-24. PubMed ID: 8138030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and nitrogen sources regulate delta-aminolevulinic acid and gamma-aminobutyric acid transport in Saccharomyces cerevisiae.
    Correa García S; Bermúdez Moretti M; Ramos E; Batlle A
    Int J Biochem Cell Biol; 1997; 29(8-9):1097-101. PubMed ID: 9416005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA uptake in a Saccharomyces cerevisiae strain.
    Bermúdez Moretti M; Correa García S; Ramos EH; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):843-9. PubMed ID: 8535178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porphyrin biosynthesis intermediates are not regulating delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Moretti MB; Garcia SC; Batlle A
    Biochem Biophys Res Commun; 2000 Jun; 272(3):946-50. PubMed ID: 10860855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. delta-Aminolevulinic acid uptake is mediated by the gamma-aminobutyric acid-specific permease UGA4.
    Bermúdez Moretti M; Correa García S; Ramos E; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1996 Jun; 42(4):519-23. PubMed ID: 8828907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that 4-aminobutyric acid and 5-aminolevulinic acid share a common transport system into Saccharomyces cerevisiae.
    Bermúdez Moretti M; Correa García SR; Chianelli MS; Ramos EH; Mattoon JR; Batlle A
    Int J Biochem Cell Biol; 1995 Feb; 27(2):169-73. PubMed ID: 7767784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae.
    Lewis TA; Taylor FR; Parks LW
    J Bacteriol; 1985 Jul; 163(1):199-207. PubMed ID: 3891725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory role of ALA-S and ALA-D in a haem-deficient mutant of Saccharomyces cerevisiae.
    Araujo LS; Lombardo ME; Del C Batlle AM
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):591-5. PubMed ID: 9678894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. delta-Aminolevulinic acid dehydratase deficiency can cause delta-aminolevulinate auxotrophy in Escherichia coli.
    O'Neill GP; Thorbjarnardóttir S; Michelsen U; Pálsson S; Söll D; Eggertsson G
    J Bacteriol; 1991 Jan; 173(1):94-100. PubMed ID: 1987138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ureidosuccinic acid permeation in Saccharomyces cerevisiae.
    Greth ML; Chevallier MR; Lacroute F
    Biochim Biophys Acta; 1977 Feb; 465(1):138-51. PubMed ID: 13831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mitochondrial cytochromes and haem content on cytochrome P450 in Saccharomyces cerevisiae.
    Meussdoerffer F; Fiechter A
    J Gen Microbiol; 1986 Aug; 132(8):2187-93. PubMed ID: 3025336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters.
    Rud E; Gederaas O; Høgset A; Berg K
    Photochem Photobiol; 2000 May; 71(5):640-7. PubMed ID: 10818796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast.
    Lorenz RT; Parks LW
    J Bacteriol; 1987 Aug; 169(8):3707-11. PubMed ID: 3301810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli.
    Verkamp E; Backman VM; Björnsson JM; Söll D; Eggertsson G
    J Bacteriol; 1993 Mar; 175(5):1452-6. PubMed ID: 8444807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine in Saccharomyces cerevisiae.
    Iwashima A; Kawasaki Y; Kimura Y
    Biochim Biophys Acta; 1990 Feb; 1022(2):211-4. PubMed ID: 2407290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UGA4 gene encoding the gamma-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene.
    Moretti MB; Batlle A; Garcia SC
    Int J Biochem Cell Biol; 2001 Dec; 33(12):1202-7. PubMed ID: 11606256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid and complex lipid composition of a Saccharomyces cerevisiae mutant unable to synthesize delta-aminolevulinic acid.
    Mudd JB; Saltzgaber-Müller J
    Arch Biochem Biophys; 1978 Mar; 186(2):359-64. PubMed ID: 345974
    [No Abstract]   [Full Text] [Related]  

  • 18. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications.
    Döring F; Walter J; Will J; Föcking M; Boll M; Amasheh S; Clauss W; Daniel H
    J Clin Invest; 1998 Jun; 101(12):2761-7. PubMed ID: 9637710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the UGA4 gene encoding the delta-aminolevulinic and gamma-aminobutyric acids permease in Saccharomyces cerevisiae is controlled by amino acid-sensing systems.
    Bermudez Moretti M; Perullini AM; Batlle A; Correa Garcia S
    Arch Microbiol; 2005 Nov; 184(2):137-40. PubMed ID: 16187100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Aminolaevulinic acid methyl ester transport on amino acid carriers in a human colon adenocarcinoma cell line.
    Gederaas OA; Holroyd A; Brown SB; Vernon D; Moan J; Berg K
    Photochem Photobiol; 2001 Feb; 73(2):164-9. PubMed ID: 11272730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.