These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 8138034)
1. Characterization of the type of carbohydrate chains of the higher molecular weight (140 kDa) acid phosphatase of the frog liver. Kubicz A; Szalewicz A Int J Biochem; 1993 Dec; 25(12):1957-61. PubMed ID: 8138034 [TBL] [Abstract][Full Text] [Related]
2. Studies on the oligosaccharide heterogeneity of the isoelectric forms of the lower molecular weight acid phosphatase of frog liver. Kubicz A; Szalewicz A; Chrambach A Int J Biochem; 1991; 23(4):413-9. PubMed ID: 2015951 [TBL] [Abstract][Full Text] [Related]
3. The 102 kDa chicken liver acid phosphatase: dimeric structure, glycoprotein nature and immunological properties. Szalewicz A; Grabska T; Kubicz A Comp Biochem Physiol B Biochem Mol Biol; 1997 Jun; 117(2):293-8. PubMed ID: 9226888 [TBL] [Abstract][Full Text] [Related]
4. The 35 kDa acid metallophosphatase of the frog Rana esculenta liver: studies on its cellular localization and protein phosphatase activity. Szalewicz A; Strzelczyk B; Sopel M; Kubicz A Acta Biochim Pol; 2003; 50(2):555-66. PubMed ID: 12833181 [TBL] [Abstract][Full Text] [Related]
5. The lower molecular weight acid phosphatase from the frog liver: isolation of homogeneous AcPase III and IV representing glycoforms with different bioactivity. Jańska H; Kubicz A; Szalewicz A Comp Biochem Physiol B; 1989; 92(2):341-6. PubMed ID: 2784366 [TBL] [Abstract][Full Text] [Related]
6. Amino acid composition and immunochemical properties of AcPase III and AcPase IV representing glycoforms of the lower molecular weight, tartrate-resistant acid phosphatase of the frog liver. Szalewicz A; Jańska H; Strzelczyk B; Kubicz A Int J Biochem; 1992 Jun; 24(6):975-9. PubMed ID: 1612187 [TBL] [Abstract][Full Text] [Related]
7. Acid phosphatase from liver of the frog Rana esculenta, separation and partial characterization of multiple forms. Kubicz A; Dratewka E; Malicka-Błaszkiewicz M Acta Biochim Pol; 1978; 25(4):349-59. PubMed ID: 35912 [TBL] [Abstract][Full Text] [Related]
8. The high molecular weight and the low molecular weight acid phosphatases of the frog liver and their phosphotyrosine activity. Jańska H; Kubicz A; Szalewicz A; Haraźna J Comp Biochem Physiol B; 1988; 90(1):173-8. PubMed ID: 2456178 [TBL] [Abstract][Full Text] [Related]
9. Characterization of carbohydrates of adult Echinococcus granulosus by lectin-binding analysis. Casaravilla C; Malgor R; Carmona C J Parasitol; 2003 Feb; 89(1):57-61. PubMed ID: 12659303 [TBL] [Abstract][Full Text] [Related]
10. Carbohydrate chain analysis by lectin binding to electrophoretically separated glycoproteins from murine B16 melanoma sublines of various metastatic properties. Irimura T; Nicolson GL Cancer Res; 1984 Feb; 44(2):791-8. PubMed ID: 6692378 [TBL] [Abstract][Full Text] [Related]
11. Electrofocusing of acid phosphatases from frog liver, using an immobilized pH gradient. Kubicz A; Szalewicz A; Fawcett JS; Chrambach A Electrophoresis; 1990 Feb; 11(2):147-51. PubMed ID: 2338069 [TBL] [Abstract][Full Text] [Related]
12. Selective inhibition of N-acetylglucosamine and galactose-specific lectins including the 14-kDa vertebrate lectin by novel synthetic biantennary oligosaccharides. Gupta D; Sabesan S; Brewer CF Eur J Biochem; 1993 Sep; 216(3):789-97. PubMed ID: 8404897 [TBL] [Abstract][Full Text] [Related]
13. Characterization of carbohydrate chains of C1-inhibitor and of desialylated C1-inhibitor. Schoenberger OL FEBS Lett; 1992 Dec; 314(3):430-4. PubMed ID: 1468580 [TBL] [Abstract][Full Text] [Related]
14. Formation of homogeneous carbohydrate-lectin cross-linked precipitates from mixtures of D-galactose/N-acetyl-D-galactosamine-specific lectins and multiantennary galactosyl carbohydrates. Bhattacharyya L; Brewer CF Eur J Biochem; 1992 Aug; 208(1):179-85. PubMed ID: 1511686 [TBL] [Abstract][Full Text] [Related]
15. Studies of the heterogeneity of carp liver acid phosphatases: acid phosphatase--I. Subunit structure and carbohydrate composition. Jańska H; Kubicz A Comp Biochem Physiol B; 1985; 82(3):563-7. PubMed ID: 4085217 [TBL] [Abstract][Full Text] [Related]
16. Purification and carbohydrate-binding specificities of a blood type B binding lectin from hemolymph of a crab (Charybdis japonica). Umetsu K; Yamashita K; Suzuki T J Biochem; 1991 May; 109(5):718-21. PubMed ID: 1917895 [TBL] [Abstract][Full Text] [Related]
17. Relationship between the acid phosphatases of the Kurloff body and the major 30-35 kDa glycoproteins of the Kurloff cell. Oulhaj N; Taouji S; Izard J; Landemore G Biol Cell; 1995; 83(2-3):141-7. PubMed ID: 7549909 [TBL] [Abstract][Full Text] [Related]
18. Comparative lectin histochemistry on taste buds in foliate, circumvallate and fungiform papillae of the rabbit tongue. Witt M; Miller IJ Histochemistry; 1992 Oct; 98(3):173-82. PubMed ID: 1452451 [TBL] [Abstract][Full Text] [Related]
19. Recognition roles of the carbohydrate glycotopes of human and bovine lactoferrins in lectin-N-glycan interactions. Yen MH; Wu AM; Yang Z; Gong YP; Chang ET Biochim Biophys Acta; 2011 Feb; 1810(2):139-49. PubMed ID: 21055448 [TBL] [Abstract][Full Text] [Related]
20. Lectin binding on carbohydrate compounds of the flask cells in the claw-frog kidney. Jonas L; Ostwald C Acta Histochem; 1988; 84(2):217-25. PubMed ID: 3149443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]