These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8139535)

  • 1. Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms commingle in the cytosol.
    Boguta M; Hunter LA; Shen WC; Gillman EC; Martin NC; Hopper AK
    Mol Cell Biol; 1994 Apr; 14(4):2298-306. PubMed ID: 8139535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA.
    Gillman EC; Slusher LB; Martin NC; Hopper AK
    Mol Cell Biol; 1991 May; 11(5):2382-90. PubMed ID: 1850093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations.
    Tolerico LH; Benko AL; Aris JP; Stanford DR; Martin NC; Hopper AK
    Genetics; 1999 Jan; 151(1):57-75. PubMed ID: 9872948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae.
    Dihanich ME; Najarian D; Clark R; Gillman EC; Martin NC; Hopper AK
    Mol Cell Biol; 1987 Jan; 7(1):177-84. PubMed ID: 3031456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA sequence and transcript mapping of MOD5: features of the 5' region which suggest two translational starts.
    Najarian D; Dihanich ME; Martin NC; Hopper AK
    Mol Cell Biol; 1987 Jan; 7(1):185-91. PubMed ID: 3031457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5.
    Slusher LB; Gillman EC; Martin NC; Hopper AK
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9789-93. PubMed ID: 1946403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of heterogeneous transcriptional start sites and translational selection of AUGs dictate the production of mitochondrial and cytosolic/nuclear tRNA nucleotidyltransferase from the same gene in yeast.
    Wolfe CL; Lou YC; Hopper AK; Martin NC
    J Biol Chem; 1994 May; 269(18):13361-6. PubMed ID: 8175766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery.
    Zoladek T; Vaduva G; Hunter LA; Boguta M; Go BD; Martin NC; Hopper AK
    Mol Cell Biol; 1995 Dec; 15(12):6884-94. PubMed ID: 8524255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles.
    Khalique A; Mattijssen S; Haddad AF; Chaudhry S; Maraia RJ
    PLoS Genet; 2020 Apr; 16(4):e1008330. PubMed ID: 32324744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol.
    Martin NC; Hopper AK
    Biochimie; 1994; 76(12):1161-7. PubMed ID: 7748951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoplasmic and nuclear populations of the eukaryote tRNA-isopentenyl transferase have distinct functions with implications in human cancer.
    Smaldino PJ; Read DF; Pratt-Hyatt M; Hopper AK; Engelke DR
    Gene; 2015 Feb; 556(1):13-8. PubMed ID: 25261850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N2,N2-dimethylguanosine-specific tRNA methyltransferase contains both nuclear and mitochondrial targeting signals in Saccharomyces cerevisiae.
    Li JM; Hopper AK; Martin NC
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1411-9. PubMed ID: 2677019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.
    Chatton B; Walter P; Ebel JP; Lacroute F; Fasiolo F
    J Biol Chem; 1988 Jan; 263(1):52-7. PubMed ID: 3275649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases.
    Mireau H; Lancelin D; Small ID
    Plant Cell; 1996 Jun; 8(6):1027-39. PubMed ID: 8672889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae.
    Stein I; Peleg Y; Even-Ram S; Pines O
    Mol Cell Biol; 1994 Jul; 14(7):4770-8. PubMed ID: 8007976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase.
    Outten CE; Culotta VC
    J Biol Chem; 2004 Feb; 279(9):7785-91. PubMed ID: 14672937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separate information required for nuclear and subnuclear localization: additional complexity in localizing an enzyme shared by mitochondria and nuclei.
    Rose AM; Joyce PB; Hopper AK; Martin NC
    Mol Cell Biol; 1992 Dec; 12(12):5652-8. PubMed ID: 1448094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of Mod5 is affected by tRNA binding with implications for tRNA gene-mediated silencing.
    Read DF; Waller TJ; Tse E; Southworth DR; Engelke DR; Smaldino PJ
    FEBS Lett; 2017 Jun; 591(11):1601-1610. PubMed ID: 28303570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae.
    Wang X; Mann CJ; Bai Y; Ni L; Weiner H
    J Bacteriol; 1998 Feb; 180(4):822-30. PubMed ID: 9473035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing.
    Pratt-Hyatt M; Pai DA; Haeusler RA; Wozniak GG; Good PD; Miller EL; McLeod IX; Yates JR; Hopper AK; Engelke DR
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):E3081-9. PubMed ID: 23898186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.