These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8139756)

  • 41. Posttranslational protein modification by amino acid addition in intact and regenerating axons of the rat sciatic nerve.
    Zanakis MF; Chakraborty G; Sturman JA; Ingoglia NA
    J Neurochem; 1984 Nov; 43(5):1286-94. PubMed ID: 6208329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts.
    Sissler M; Giegé R; Florentz C
    EMBO J; 1996 Sep; 15(18):5069-76. PubMed ID: 8890180
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum.
    Batsios P; Ishikawa-Ankerhold HC; Roth H; Schleicher M; Wong CCL; Müller-Taubenberger A
    Mol Biol Cell; 2019 Feb; 30(4):453-466. PubMed ID: 30586322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle.
    Kashina A
    Anat Rec (Hoboken); 2014 Sep; 297(9):1630-6. PubMed ID: 25125176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of Arginylated Peptides by Subtractive Edman Degradation.
    Kashina AS; Yates JR
    Methods Mol Biol; 2015; 1337():105-7. PubMed ID: 26285887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of the post-translational conjugation of amino acids to rat brain proteins.
    Chakraborty G; Sturman JA; Ingoglia NA
    Neuroscience; 1990; 37(1):215-21. PubMed ID: 2243593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of Arginylated Peptides by Subtractive Edman Degradation.
    Kashina AS; Yates Iii JR
    Methods Mol Biol; 2023; 2620():153-155. PubMed ID: 37010761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Re-examination of the post-translational arginylated protein of 125-kD initially identified as N-STOP.
    Decca MB; Galiano MR; Barra HS; Hallak ME
    Neurochem Res; 2004 Feb; 29(2):413-8. PubMed ID: 15002739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein modification by RNA-dependent posttranslational aminoacylation in synaptoplasm.
    Gower DJ; Tytell M
    J Neurochem; 1986 Aug; 47(2):389-95. PubMed ID: 3734786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence that non-caspase proteases are required for chromatin degradation during apoptosis.
    Hughes FM; Evans-Storms RB; Cidlowski JA
    Cell Death Differ; 1998 Dec; 5(12):1017-27. PubMed ID: 9894608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.
    Galiano MR; Hallak ME
    Methods Mol Biol; 2015; 1337():49-58. PubMed ID: 26285880
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correlated Measurement of Endogenous ATE1 Activity on Native Acceptor Proteins in Tissues and Cultured Cells to Detect Cellular Aging.
    Kaji H; Kaji A
    Methods Mol Biol; 2015; 1337():39-48. PubMed ID: 26285879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation.
    Zhang F; Saha S; Shabalina SA; Kashina A
    Science; 2010 Sep; 329(5998):1534-7. PubMed ID: 20847274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitors of trypsin-like serine proteases inhibit processing of the caspase Nedd-2 and protect PC12 cells and sympathetic neurons from death evoked by withdrawal of trophic support.
    Stefanis L; Troy CM; Qi H; Greene LA
    J Neurochem; 1997 Oct; 69(4):1425-37. PubMed ID: 9326271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantification of intracellular N-terminal β-actin arginylation.
    Chen L; Kashina A
    Sci Rep; 2019 Nov; 9(1):16669. PubMed ID: 31723207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.
    Kumar A; Birnbaum MD; Patel DM; Morgan WM; Singh J; Barrientos A; Zhang F
    Cell Death Dis; 2016 Sep; 7(9):e2378. PubMed ID: 27685622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacterial Expression and Purification of Recombinant Arginyltransferase (ATE1) and Arg-tRNA Synthetase (RRS) for Arginylation Assays.
    Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():67-71. PubMed ID: 26285882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assaying Intracellular Arginylation Activity Using a Fluorescent Reporter.
    MacTaggart B; Kashina AS
    Methods Mol Biol; 2023; 2620():81-85. PubMed ID: 37010751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chymase-directed serine protease inhibitor that reacts with a single 30-kDa granzyme and blocks NK-mediated cytotoxicity.
    Woodard SL; Jackson DS; Abuelyaman AS; Powers JC; Winkler U; Hudig D
    J Immunol; 1994 Dec; 153(11):5016-25. PubMed ID: 7963562
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Posttranslational incorporation of [14C]arginine into rat brain proteins. Acceptor changes during development.
    Hallak ME; Barra HS; Caputto R
    J Neurochem; 1985 Mar; 44(3):665-9. PubMed ID: 3973585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.